Inhibitory Activity of Aralia elata Leaves on Protein Tyrosine Phosphatase 1B and α-Glucosidase

참두릅 잎의 Protein Tyrosine Phosphatase 1B와 α-Glucosidase 저해 활성

  • Cho, Yoon Sook (College of Pharmacy, Kyung Sung University) ;
  • Seong, Su Hui (Department of Food and Life Science, Pukyong National University) ;
  • Bhakta, Himanshu Kumar (Department of Food and Life Science, Pukyong National University) ;
  • Jung, Hee Jin (Department of Food and Life Science, Pukyong National University) ;
  • Moon, Kyung Ho (College of Pharmacy, Kyung Sung University) ;
  • Choi, Jae Sue (Department of Food and Life Science, Pukyong National University)
  • Received : 2016.01.21
  • Accepted : 2016.03.10
  • Published : 2016.03.31

Abstract

Anti-diabetic potential of the leaves of A. elata through the inhibitory activity on PTP1B and ${\alpha}$-glucosidase has not been reported. In this study, the EtOAc fraction of methanolic extract from the leaves of A. elata showed potent inhibitory activity against the PTP1B and ${\alpha}$-glucosidase with $IC_{50}$ value of $96.29{\pm}0.3$ and $264.71{\pm}14.87{\mu}g/mL$, respectively. Three known triterpenoids, oleanolic acid, oleanolic acid-28-O-${\beta}$-D-glucopyranoside and oleanolic acid-3-O-${\beta}$-D-glucopyranoside were isolated from the most active EtOAc fraction. We determined the chemical structure of these triterpenoids through comparisons of published nuclear magnetic resonance (NMR) spectroscopic data. Furthermore, we screened these triterpenoids for their ability to inhibit PTP1B and ${\alpha}$-glucosidase over a range of concentrations ($12.5-50{\mu}M$). All three terpenoids significantly inhibited PTP1B in a concentration dependent manner and oleanolic acid effectively inhibited ${\alpha}$-glucosidase. In addition, these compounds revealed potent inhibitory activity with negative binding energies toward PTP1B, showing high affinity and tight binding capacity in the molecular docking studies. Therefore, the results of the present study clearly demonstrate that A. elata leaves and its triterpenoid constituents might be beneficial in the prevention or treatment of diabetic disease.

Keywords

References

  1. Kwon, J. H., Chang, M, J., Seo, H, W., Lee, J. H., Min, B. S., Na, M., Kim, J. C., Woo, M, H., Choi, J, S., Lee, H. K., and Bae, K. (2008) Triterpenoids and a sterol from the stem-bark of Styrax japonica and their protein tyrosine phosphate 1B inhibitory activities. Phytother. Res. 22: 1303-1306. https://doi.org/10.1002/ptr.2484
  2. Tonks, N. K. (2003) PTP1B: From the sidelines to the front lines. FEBS. Lett. 546: 140-148. https://doi.org/10.1016/S0014-5793(03)00603-3
  3. Ahmad, F., Azevedo, J. L., Cortright, R., Dohm, G. and Goldstein, B. J. (1997) Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J. Clin. Invest. 100: 449-458. https://doi.org/10.1172/JCI119552
  4. Byon, J. C., Kusari, A. B. and Kusari, J. (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol. Cell. Biochem. 182: 101-108. https://doi.org/10.1023/A:1006868409841
  5. Goldstein, B. J., Ahmad, F., Ding, W., Li, P. M. and Zhang, W. R. (1998) Regulation of the insulin signaling pathway by cellular protein tyrosine phosphatases. Mol. Cell. Biochem. 182: 91-99. https://doi.org/10.1023/A:1006812218502
  6. Mohamed Sham Shihabudeen, H., Hansi Priscilla, D. and Thirumurugan, K. (2011) Cinnamon extract inhibits ${\alpha}$-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr. Metab. (Lond.) 8: 46. https://doi.org/10.1186/1743-7075-8-46
  7. Toshiyuki, T. and Mitsuo, M. (2011) Potent ${\alpha}$-Glucosidase Inhibitors from Safflower (Carthamus tinctorius L.) Seed. Phytother. Res. 26: 722-726.
  8. Caspary, W. F. (1978) Sucrose malabsorption in man after ingestion of ${\alpha}$-glucoside hydrolase inhibitor, Lancet 1: 1231-1233.
  9. Hillebrand, I., Boehme, K., Frank, G., Fink, H. and Berchtold, P. (1979) The effects of the alpha-glucosidase inhibitor BAY g 5421 (Acarbose) on meal-stimulated elevations of circulating glucose, insulin, and triglyceride levels in man. Res. Exp. Med. (Berl.) 175: 81-86. https://doi.org/10.1007/BF01851236
  10. van de Laar, F. A. (2008) Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 4: 1189-1195. https://doi.org/10.2147/VHRM.S3119
  11. Sato, Y. and Rifkin, D. B. (1989) Inhibition of endoethelial cell movement by pericytes and smooth muscle cells: Activation of a latent transformation growth factor B1-like molecule by plasmin during coculture. J. Cell. Biol. 109: 309-315. https://doi.org/10.1083/jcb.109.1.309
  12. van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E. and van Weel, C. (2005) Alphaglucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 28: 154-163. https://doi.org/10.2337/diacare.28.1.154
  13. 이창복 (1989) 대한 식물도감, 575. 향문사, 서울.
  14. Bae, K. W., Medicinal Plants of Korea, Kyohak Publishing Co. Ltd., Seoul, p. 363, 2000.
  15. 이우철 (1997) 한국식물명고, 771-772. 아카데미 서적, 서울.
  16. 지형준, 이상인 (1988) 대한 약전외 한약(생약) 규격집 주해서, 120. 한국 메디칼 인덱스사, 서울.
  17. Han, B. H., Han, Y, N., Han, K. A., Park, M. H. and Lee, E. O. (1983) Studies on the anti-inflammatory activity of Aralia continentalis (I). Arch. Pharm. Res. 6: 17-23. https://doi.org/10.1007/BF02855697
  18. Han, B. H., Park, M. H., Han, Y. N. and Manalo, J. B. (1983) Studies on the anti-inflammatory activity of Aralia continentalis (II). Arch. Pharm. Res. 6: 75-77. https://doi.org/10.1007/BF02855705
  19. Han, B. H., Woo, E. R., Park, M. H. and Han, Y. N. (1985) Studies on the anti-inflammatory activity of Aralia continentalis (III). Arch. Pharm. Res. 8: 59-65. https://doi.org/10.1007/BF02912223
  20. Yun-Choi, H. S., Kim, J. H. and Lee, J. R. (1986) Screening of potential inhibitors of platelet aggregation from plant sources (II). Kor. J. Pharmacogn. 17: 19-22.
  21. Kosela, S., Rasad, A., Achmad, S. A., Wicaksonon, W., Baik, S. K., Han, Y. N. and Han, B. H. (1986) Effects of diterpene acids on malon-dialdehyde generation during thrombin induced aggregation of rat platelets. Arch. Pharm. Res. 9: 189-191. https://doi.org/10.1007/BF02900005
  22. Kim, J. S., Kang, S. S., Lee, M. W. and Kim, O.K. (1995) Isolation of flavonoids from the leaves of Aralia continentalis. Kor. J. Pharmacogn. 26: 239-243.
  23. Perry, L. M. (1980) Medicinal plants of east and southeast asia, Attributed properties and uses, 41. The MIT Press, London.
  24. Jiangsu xin yi xue yuan (1977) Zhong-yao-ci-dian, 1268. Shanghai ke xue ji shu chu ban she, Shanghai.
  25. Kang, S. S. (1997) Chemistry and biological activity of the constitiuents from Aralia species. Ann. Rept. Nat. Prod. Sci. 5: 1-26.
  26. Sawamura, M., Lee-Kim, M.-S., Shichiri, K.-I., Tsuji, T. and Machida, K. (1989) Volatile constituents of Japanese and Korean Udo (Aralia cordata Thunb.) and Butterbur (Petasites japonica Miq.). Research Reports of the Kochi University 38: 1-12.
  27. Jung, H. J., Jung, H. A., Kang, S. S., Lee, J. H., Cho, Y. S., Moon, K. H., and Choi, J. S. (2012) Inhibitory activity of Aralia continentalis roots on protein tyrosine phosphatase 1B and rat lens aldose reductase. Arch, Pharm Res. 135: 1771-1777.
  28. Jung, H. A., Cho, Y. S., Oh, S. H., Lee, S. H., Min, B. S., Moon, K. H. and Choi, J. S. (2013) Kinetic and molecular docking studies of pimaran type diterpenes as protein tyrosine phosphatase (PTP1B) inhibitors from Aralia continentalis roots. Arch. Pharm. Res. 36: 957-965. https://doi.org/10.1007/s12272-013-0131-5
  29. Kim, J. S., Kang, S. S., Choi, J. S., Lee, M. W., and Lee, T. S. (1998) Antioxidant components from Aralia continentalis. Kor. J. Pharmacogn. 29: 13-17.
  30. Na, M., Jang, J., Njamen, D., Mbafor, J. T., Fomum, Z. T., Kim, B. Y., Oh, W. K. and Ahn, J. S. (2006) Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildraedii. J. Nat. Prod. 69: 1572-1576. https://doi.org/10.1021/np0601861
  31. Li, T., Zhang, X. D., Song, Y. W. and Liu, J. W. (2005) A microplate-based screening method for ${\alpha}$-glucosidase inhibitors. Chin. J. Clin. Pharmacol. Ther. 10: 1128-1134.
  32. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., and Zardecki, C. (2002) The protein data bank. Acta. Cryst. 58: 899-907.
  33. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F. Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The protein data bank: a computerbased archival file for macromolecular structures. J. Mol. Biol. 112: 535-542. https://doi.org/10.1016/S0022-2836(77)80200-3
  34. Szczepankiewicz, B. G., Liu, G., Hajduk, P. J., Abad-Zapatero, C., Pei, Z., Xin, Z., Lubben, T., Trevillyan, J. M., Stashko, M. A., Ballaron, S. J., Liang, H., Huang, F., Hutchins, C. W., Fesik, S. W., and Jirousek, M. R. (2003) Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc. 125: 4087-4096. https://doi.org/10.1021/ja0296733
  35. Kang, S. S., Kim, J. S., Kim, O. K. and Lee, E. B. (1993) Triterpenoid saponins from the root barks of Aralia elata. Arch. Pharm. Res. 16: 104-108. https://doi.org/10.1007/BF03036855
  36. Cai, P., Xiao, Z. and Wei, J. (1982) Studies on the chemical constituents of Zhu Jie Shen (Panax japonicas) Chin Trad Herb Drugs, 13: 1-2.
  37. Kasai, R., Tanaka, T., Nie, R.-L., Miyakoshi, M., Zhou, J. and Tanaka, O. (1990) Saponins from Chinese medicinal plants, Hemsleya graciliflora (Curcubitaceae). Chem. Pham. Bull. 38: 1320-1322. https://doi.org/10.1248/cpb.38.1320
  38. Lee, W. H., Yang, E. J., Ku, S. K., Song, K. S. and Bae, J. S. (2012). Anticoagulant activities of oleanolic acid via inhibition of tissue factor expressions. BMB reports, 45: 390-395. https://doi.org/10.5483/BMBRep.2012.45.7.065