DOI QR코드

DOI QR Code

Antioxidative Effect of Chelidonium majus Extract on Cultured NIH3T3 Fibroblasts Injured by Cadmium Chloride of Toxicant

독성물질인 염화카드뮴으로 손상된 배양 NIH3T3 섬유모세포에 대한 애기똥풀 추출물의 항산화 효과

  • Kim, Tae-Yoon (Department of Physical Therapy, Wonkwang Health Science University) ;
  • Jekal, Seung-Joo (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 김태윤 (원광보건대학교 물리치료학과) ;
  • 제갈승주 (원광보건대학교 임상병리학과)
  • Received : 2016.02.01
  • Accepted : 2016.03.03
  • Published : 2016.03.31

Abstract

The aim of this study was to evaluate the cytotoxicity of cadmium chloride ($CdCl_2$), toxicant, and the protective effect of Chelidonium majus (CM) extract on $CdCl_2$-induced cytotoxicity in cultured NIH3T3 fibroblasts. Cell viability, the effect of butylated hydroxytoluene (BHT) against $CdCl_2$, and the antioxidative effects including DPPH-free radical scavenging activity, superoxide anion-radical scavenging activity (SSA), and lactate dehydrogenase (LDH) activity were assessed. $CdCl_2$ caused a significant dose-dependent decrease in cell viability, and $XTT_{50}$ value was determined at 38.7uM of $CdCl_2$. It was determined as highly-toxic by Borenfreund and Puerner' toxic criteria. BHT of antioxidant significantly increased cell viability severely damaged by $CdCl_2$-induced cytotoxicity in these cultures. In the protective effect of CM extract on $CdCl_2$-induced cytotoxicity, CM extract significantly increased cell viability, DPPH-free radical scavenging activity, SSA and inhibitory activity of LDH. From these results, it is suggested that oxidative stress is involved in the cytotoxicity of $CdCl_2$, and CM extract showed protective efficacy on $CdCl_2$-induced cytotoxicity via antioxidative effects. Conclusively, natural resources like CM extract may be a putative antioxidative agent for the detoxification or diminution of toxicity correlated with oxidative stress.

본 연구는 배양 NIH3T3 섬유모세포를 재료로 독성물질인 염화카드뮴($CdCl_2$)의 세포독성과 이에 대한 애기똥풀(Chelidonium majus, CM) 추출물의 방어효과를 조사하기 위하여 세포생존율(cell viability)을 비롯한 $CdCl_2$에 대한 BHT의 영향 및 DPPH-자유라디칼 소거능, superoxide anion-radical scavenging activity (SSA), lactate dehydrogenase (LDH) 활성과 같은 항산화 효과를 분석하였다. 그 결과 $CdCl_2$는 농도 의존적으로 배양 NIH3T3 섬유모세포의 생존율을 유의하게 감소하였으며, $XTT_{50}$값이 38.7uM로 나타나 Borenfreund와 Puerner의 독성판정기준에 따라 고독성(highly-toxic)인 것으로 나타났다. 또한, 항산화제인 BHT는 $CdCl_2$의 독성으로 인하여 심하게 손상된 세포생존율을 유의하게 증가시켰다. 한편, $CdCl_2$의 세포독성에 대한 CM 추출물의 방어효과에서, CM 추출물은 $CdCl_2$에 의하여 감소된 세포생존율을 유의하게 증가시켰으며, 또한 DPPH-자유라디칼 소거능을 비롯한 SSA 및 LDH 활성 억제와 같은 항산화능을 나타냈다. 이상의 결과에서 $CdCl_2$의 독성에 산화적 손상이 관여하고 있으며, CM 추출물은 항산화 효과에 의하여 $CdCl_2$의 세포독성에 대한 방어효과를 나타냈다. 결론적으로, CM 추출물과 같은 천연소재는 산화적 손상과 관련된 독성의 제독 내지는 저감을 위한 항산화물질로서의 개발적 가치가 있다고 사료된다.

Keywords

References

  1. Jung JY, Oh SK, Park SH, Yoon MY, Yu YW, Rim YS, et al. Antioxidative effect of Ajuga multiflora BUNGE extract on chrominum trioxide, dermatitis inducer in cultured NIH3T3 fibroblasts. J Invest Cosmetol. 2014;10:21-26. https://doi.org/10.15810/jic.2014.10.1.003
  2. Waalkes MP, Poirier LA. In vitro cadmium-DNA interaction: Cooperativity of binding and competitive antagonism by calcium, magnesium and zinc. Toxicol Appl Pharmacol. 1984;75:539-546. https://doi.org/10.1016/0041-008X(84)90190-X
  3. Nomiyama K. Recent progress and perspective in cadmium health effects studies. Sci Total Environ. 1980;14:199-232. https://doi.org/10.1016/0048-9697(80)90024-8
  4. Park ST, Choi MK, Lee KC, Cho KH, Jeon BH, Woo WH. Study on the effect of vitamin E on methylmercury in cultured spinal motor neurons. Kor J Oriental Med Pathol. 2000;14:7-10.
  5. Son YW, Rim YS, Yu YW, Jung IJ. Effect of persimmon leaves extract on the cytotoxicity induced by cadmium of hair dye component. J Invest Cosmetol. 2012;8:9-15. https://doi.org/10.15810/jic.2012.8.1.002
  6. Kim MS, Seo YM, Park ST. Antioxidative effect of kaempferol on cultured human skin fibroblasts damaged by methylmercuric chloride. J Kor Soc People Plants Environ. 2010;13:23-29.
  7. Jung JY, Joe DY, Park SH, Seo YM, Protective effect of Rumex crispus L. extract on cultured NIH3T3 fibroblasts damaged by cadmium of environmetal pollutant. J Kor Soc People Plants Environ. 2014;17:15-21. https://doi.org/10.11628/ksppe.2014.17.1.015
  8. Rim YS, Song WS, Seo YM, Park ST, Kim SM. A study on the cytotoxic effects of several plant extracts on the cell viability and cell adhesion activity in cultured NIH3T3 fibroblast. Kor J Clin Lab Sci. 2010;42:116-124.
  9. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer cell lines. J Ethnophamacol. 2007;113:115-124. https://doi.org/10.1016/j.jep.2007.05.016
  10. Son YW, Oh SK, Choi YR, Park SH, Seo YM, Lee HJ, et al. Effects of Chelidonium majus extract on mercury-induced cytotoxicity and melanogenesis. J Invest Cosmetol. 2013;9:229-235. https://doi.org/10.15810/jic.2013.9.3.004
  11. Lenfeld J, Kroutil M, Marsalea E, Stavik J, Preininger V. Antiinflammatory avtivity of quatemary benzophenanthridine alkaroids from Chelidonium majus. Planta Med. 1981;43:161-165. https://doi.org/10.1055/s-2007-971493
  12. Rim YS, Seo YM, Son YW, Oh YL. Effect of Salicornia herbacea L. extract on protein synthesis and detoxicity in cultured C6 glioma cells. J Kor Soc People Plants Environ. 2012;15:149-154.
  13. Wang EA. Bone morphogenetic protein (BMPs). Therapeutic potential in healing bony defects. Trends Biotechnol. 1993;11:379-383. https://doi.org/10.1016/0167-7799(93)90096-R
  14. Jung HM, Seo SJ, Kim JB, Kim NW, Joo EY. The study of physiological activities from Chelidonium majus var. asiaticum extract. J Invest Cosmetol. 2011;7:359-366. https://doi.org/10.15810/jic.2011.7.4.004
  15. Brenfreund E, Puerner JA. A simple quantitative procedure using monolayer culture for cytotoxicity assay (HTD/NR-90). J Tiss Cult Meth. 1984;9:7-9.
  16. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;26:1199-1200.
  17. Koizumi T, Waalkes MP. Effect of zinc on the binding cadmium to DNA: assessment with testicular interstitial cell and calf thymus DNAs. Toxicol In Vitro. 1990;4:51-55. https://doi.org/10.1016/0887-2333(90)90009-I
  18. Yamamoto M, Scima T, Uozumi T, Yamada K, Kawasaki T. A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and protective effect of alphatocopherol administration. Stroke. 1983;14:977-982. https://doi.org/10.1161/01.STR.14.6.977
  19. De-Heredia JB, Torregrosa J, Dominguez JR, Peres JA. Kinetic model for phenolic compoud oxidation by fenton's reagent. Chemosphere. 2001;45:85-90. https://doi.org/10.1016/S0045-6535(01)00056-X

Cited by

  1. 치매유발제인 알루미늄에 대한 Rosmarinic Acid의 보호 효과 vol.49, pp.1, 2017, https://doi.org/10.15324/kjcls.2017.49.1.8
  2. 환경오염원인 납의 신경독성에 대한 NMDA 수용체 길항제의 보호 효과 vol.27, pp.3, 2017, https://doi.org/10.15269/jksoeh.2017.27.3.193
  3. 치매유발제인 알루미늄으로 손상된 배양 C6 Glioma 세포에 대한 금은화 추출물의 보호 효과 vol.49, pp.3, 2016, https://doi.org/10.15324/kjcls.2017.49.3.271
  4. Protective Effect of Kaempferol on Cultured Neuroglial Cells Damaged by Induction of Ischemia-like Condition vol.23, pp.4, 2016, https://doi.org/10.15616/bsl.2017.23.4.339
  5. Chromium Trioxide의 독성에 대한 산수유 추출물의 항산화 효과 vol.50, pp.2, 2016, https://doi.org/10.15324/kjcls.2018.50.2.170
  6. The Antioxidative Effect of Eclipta prostrata L. Extract on Cultured NIH3T3 Fibroblasts Injured by Manganese-Induced Cytotoxicity vol.24, pp.4, 2018, https://doi.org/10.15616/bsl.2018.24.4.357
  7. 환경오염물질인 황산알루미늄의 신경독성에 대한 파리풀 추출물의 항산화 효과 vol.51, pp.2, 2016, https://doi.org/10.15324/kjcls.2019.51.2.235