DOI QR코드

DOI QR Code

Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches

질량분석 시스템을 이용한 극지 토양 유래 신규 미생물의 지질 A 화학적 구조 분석

  • Hwang, Cheol-hwan (Department of Chemical Engineering, Soongsil University) ;
  • Park, Han-Gyu (Department of Chemical Engineering, Soongsil University) ;
  • Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
  • 황철환 (숭실대학교 화학공학과) ;
  • 박한규 (숭실대학교 화학공학과) ;
  • 김윤곤 (숭실대학교 화학공학과)
  • Received : 2016.10.18
  • Accepted : 2016.11.09
  • Published : 2016.12.31

Abstract

For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.

Keywords

References

  1. Romanovsky, V., D. Drozdov, N. Oberman, G. Malkova, A. Kholodov, S. Marchenko, N. Moskalenko, D. Sergeev, N. Ukraintseva, and A. Abramov (2010) Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21: 136-155. https://doi.org/10.1002/ppp.683
  2. Brown, J. and V. E. Romanovsky (2008) Report from the International Permafrost Association: State of permafrost in the first decade of the 21st century. Permafr. Periglac. Process. 19: 255-260. https://doi.org/10.1002/ppp.618
  3. Soina, V. S., A. L. Mulyukin, E. V. Demkina, E. A. Vorobyova, and G. I. El-Registan (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4: 345-358. https://doi.org/10.1089/ast.2004.4.345
  4. Crevecoeur, S., W. F. Vincent, J. Comte, and C. Lovejoy (2015) Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front. Microbiol. 6: 192.
  5. Glauser, M., G. Zanetti, J. D. Baumgartner, and J. Cohen (1991) Septic shock: pathogenesis. Lancet. 338: 732-736. https://doi.org/10.1016/0140-6736(91)91452-Z
  6. Heumann, D. and T. Roger (2002) Initial responses to endotoxins and Gram-negative bacteria. Clin. Chim. Acta. 323: 59-72. https://doi.org/10.1016/S0009-8981(02)00180-8
  7. Kim, M. J., N. Y. Bae, K. B. W. R. Kim, J. H. Park, S. H. Park, Y. J. Cho, and D. H. Ahn (2015) Anti-inflammatory effect of water extract from tuna heart on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. KSBB J. 30: 326-331. https://doi.org/10.7841/ksbbj.2015.30.6.326
  8. Mun, O. J., M. S. Kwon, M. J. Bae, B. N. Ahn, F. Karadeniz, M. Kim, S. H. Lee, K. H. Yu, Y. Y. Kim, and Y. Seo (2015) Antiinflammatory activity of Hizikia fusiformis extracts fermented with Lactobacillus casei in LPS-stimulated RAW 264.7 macrophages. KSBB J. 30: 38-43. https://doi.org/10.7841/ksbbj.2015.30.1.38
  9. Takayama, K., N. Qureshi, C. Raetz, E. Ribi, J. Peterson, J. Cantrell, F. Pearson, J. Wiggins, and A. Johnson (1984) Influence of fine structure of lipid A on Limulus amebocyte lysate clotting and toxic activities. Infect. Immun. 45: 350-355.
  10. Lerouge, I. and J. Vanderleyden (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26: 17-47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x
  11. Raetz, C. R. (1990) Biochemistry of endotoxins. Annu. Rev. Biochem. 59: 129-170. https://doi.org/10.1146/annurev.bi.59.070190.001021
  12. Schromm, A. B., K. Brandenburg, H. Loppnow, A. P. Moran, M. H. Koch, E. T. Rietschel, and U. Seydel (2000) Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267: 2008-2013. https://doi.org/10.1046/j.1432-1327.2000.01204.x
  13. Molinaro, A., A. Silipo, R. Lanzetta, M. Parrilli, P. Malvagna, A. Evidente, and G. Surico (2002) Determination of the structure of the lipid a fraction from the lipopolysaccharide of Pseudomonas cichorii by means of NMR and MALDI-TOF mass spectrometry. European J. Org. Chem. 2002: 3119-3125. https://doi.org/10.1002/1099-0690(200209)2002:18<3119::AID-EJOC3119>3.0.CO;2-M
  14. Suda, Y., T. Ogawa, W. Kashihara, M. Oikawa, T. Shimoyama, T. Hayashi, T. Tamura, and S. Kusumoto (1997) Chemical structure of lipid A from Helicobacter pylori strain 206-1 lipopolysaccharide. J. Biochem. 121: 1129-1133. https://doi.org/10.1093/oxfordjournals.jbchem.a021705
  15. Harper, M., F. St Michael, J. A. Steen, M. John, A. Wright, L. van Dorsten, E. Vinogradov, B. Adler, A. D. Cox, and J. D. Boyce (2015) Characterization of the lipopolysaccharide produced by Pasteurella multocida serovars 6, 7 and 16: Identification of lipopolysaccharide genotypes L4 and L8. Glycobiology 25: 294-302. https://doi.org/10.1093/glycob/cwu110
  16. Sturiale, L., A. Palmigiano, A. Silipo, Y. A. Knirel, A. P. Anisimov, R. Lanzetta, M. Parrilli, A. Molinaro, and D. Garozzo (2011) Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. J. Mass Spectrom. 46: 1135-1142. https://doi.org/10.1002/jms.2000
  17. Takayama, S., E. Saitoh, R. Kimizuka, S. Yamada, and T. Kato (2009) Effect of eel galectin AJL-1 on periodontopathic bacterial biofilm formation and their lipopolysaccharide-mediated inflammatory cytokine induction. Int. J. Antimicrob. Agents. 34: 355-359. https://doi.org/10.1016/j.ijantimicag.2009.04.003
  18. Jiang, H., H. Dong, G. Zhang, B. Yu, L. R. Chapman, and M. W. Fields (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl. Environ. Microbiol. 72: 3832-3845. https://doi.org/10.1128/AEM.02869-05
  19. Yin, E. T., C. Galanos, S. Kinsky, R. A. Bradshaw, S. Wessler, O. Lüderitz, and M. E. Sarmiento (1972) Picogram-sensitive assay for endotoxin: Gelation of Limulus polyphemus blood cell lysate induced lipopolysaccharides and lipid A from gram-negative bacteria. Biochim. Biophys. Acta. 261: 284-289. https://doi.org/10.1016/0304-4165(72)90340-6
  20. Gross, M., H. Mayer, C. Widemann, and K. Rudolph (1988) Comparative analysis of the lipopolysaccharides of a rough and a smooth strain of Pseudomonas syringae pv. phaseolicola. Arch. Microbiol. 149: 372-376. https://doi.org/10.1007/BF00411658
  21. Kulshin, V. A., U. Zähringer, B. Lindner, K. E. Jäger, B. A. Dmitriev, and E. T. Rietschel (1991) Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur. J. Biochem. 198: 697-704. https://doi.org/10.1111/j.1432-1033.1991.tb16069.x
  22. Ernst, R. K., C. Y. Eugene, L. Guo, K. B. Lim, J. L. Burns, M. Hackett, and S. I. Miller (1999) Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286: 1561-1565. https://doi.org/10.1126/science.286.5444.1561
  23. Ernst, R. K., A. M. Hajjar, J. H. Tsai, S. M. Moskowitz, C. B. Wilson, and S. I. Miller (2003) Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. J. Endotoxin Res. 9: 395-400. https://doi.org/10.1177/09680519030090060201
  24. Lee, C. S., Y. G. Kim, H. S. Joo, and B. G. Kim (2004) Structural analysis of lipid A from Escherichia coli O157:H7:K - using thinlayer chromatography and ion-trap mass spectrometry. J. Mass Spectrom. 39: 514-525. https://doi.org/10.1002/jms.614
  25. Kussak, A. and A. Weintraub (2002) Quadrupole ion-trap mass spectrometry to locate fatty acids on lipid A from Gram-negative bacteria. Anal. Biochem. 307: 131-137. https://doi.org/10.1016/S0003-2697(02)00004-0
  26. Hsu, F. F. and J. Turk (2000) Charge-remote and charge-driven fragmentation processes in diacyl glycerophosphoethanolamine upon low-energy collisional activation: A mechanistic proposal. J. Am. Soc. Mass Spectrom. 11: 892-899. https://doi.org/10.1016/S1044-0305(00)00159-8
  27. Koy, C., S. Mikkat, E. Raptakis, C. Sutton, M. Resch, K. Tanaka, and M. O. Glocker (2003) Matrix-assisted laser desorption/ionization-quadrupole ion trap-time of flight mass spectrometry sequencing resolves structures of unidentified peptides obtained by in-gel tryptic digestion of haptoglobin derivatives from human plasma proteomes. Proteomics 3: 851-858. https://doi.org/10.1002/pmic.200300381