Acknowledgement
Supported by : NSFC
References
- Ai, B. and Hu, B. (2011), "Heat conduction in deformable frenkel-kontorova lattices: Thermal conductivity and negative differential thermal resistance", Phys. Rev. E., 83(1), 011131. https://doi.org/10.1103/PhysRevE.83.011131
- Andersen, H.C. (1980), "Molecular dynamics simulations at constant pressure and/or temperature", J. Chem. Phys., 72(4), 2384-2393. https://doi.org/10.1063/1.439486
- Barik, D. (2006), "Heat conduction in 2D harmonic lattices with on-site potential", Europhys. Lett., 75(1), 42-48. https://doi.org/10.1209/epl/i2006-10093-9
- Berendsen, H.J., Postma, J.V., Van Gunsteren, W.F., DiNola, A.R.H.J. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81(8), 3684-3690. https://doi.org/10.1063/1.448118
- Born, M. and Huang, K. (1954), Dynamical Theory of Crystal Lattices, Clarendon, Oxford.
- Bussi, G. and Parrinello, M. (2007), "Accurate sampling using Langevin dynamics", Phys. Rev. E., 75(5), 056707. https://doi.org/10.1103/PhysRevE.75.056707
- Dhar, A. (2008), "Heat transport in low-dimensional systems", Adv. Phys., 57(5), 457-537. https://doi.org/10.1080/00018730802538522
- Dhar, A., Venkateshan, K. and Lebowitz, J.L. (2011), "Heat conduction in disordered harmonic lattices with energy-conserving noise", Phys. Rev. E., 83(2), 021108. https://doi.org/10.1103/PhysRevE.83.021108
- Giardina, C., Livi, R., Politi, A. and Vassalli, M. (2000), "Finite thermal conductivity in 1D lattices", Phys. Rev. L., 84(10), 2144-2147. https://doi.org/10.1103/PhysRevLett.84.2144
- Hatano, T. (1999), "Heat conduction in the diatomic toda lattice revisited", Phys. Rev. E., 59(1), R1-R4.
- Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A., 31(3), 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
- Jackson, E.A. and Mistriotis, A.D. (1989), "Thermal conductivity of one-and two-dimensional lattices", J. Phys. Condens. Matt., 1(7), 1223-1238. https://doi.org/10.1088/0953-8984/1/7/006
- Karpov, E.G., Park, H.S. and Liu, W.K. (2007), "A phonon heat bath approach for the atomistic and multiscale simulation of solids", Int. J. Numer. Meth. Eng., 70(3), 351-378. https://doi.org/10.1002/nme.1884
- Lepri, S., Livi, R. and Politi, A. (2003), "Thermal conduction in classical low-dimensional lattices", Phys. Rep., 377(1), 1-80. https://doi.org/10.1016/S0370-1573(02)00558-6
- Lippi, A. and Livi, R. (2000), "Heat conduction in two-dimensional nonlinear lattices", J. Stat. Phys., 100(5), 1147-1172. https://doi.org/10.1023/A:1018721525900
- Nishiguchi, N., Kawada, Y. and Sakuma, T. (1992), "Thermal conductivity in two-dimensional monatomic non-linear lattices", J. Phys. Condens. Matt., 4(50), 10227-10236. https://doi.org/10.1088/0953-8984/4/50/011
- Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81(1), 511-519. https://doi.org/10.1063/1.447334
- Pang, G. and Tang, S. (2011), "Time history kernel functions for square lattice", Comput. Mech., 48(6), 699-711. https://doi.org/10.1007/s00466-011-0615-4
- Savin, A.V. and Kosevich, Y.A. (2014), "Thermal conductivity of molecular chains with asymmetric potentials of pair interactions", Phys. Rev. E., 89(3), 032102.
- Tang, S. (2008), "A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids", J. Comput. Phys., 227(8), 4038-4062. https://doi.org/10.1016/j.jcp.2007.12.012
- Tang, S. (2010), "A two-way interfacial condition for lattice simulations", Adv. Appl. Math. Mech., 2, 45-55.
- Tang, S. and Liu, B. (2015), "Heat jet approach for atomic simulations at finite temperature", Comm. Comput. Phys., 18(5), 1445-1460. https://doi.org/10.4208/cicp.240714.260315a
- Tang, S., Zhang, L., Ying, Y.P. and Zhang, Y.J. "A finite difference approach for finite temperature multiscale computations", Preprint.
- Wang, X. and Tang, S. (2013), "Matching boundary conditions for lattice dynamics", Int. J. Numer. Meth. Eng., 93(12), 1255-1285. https://doi.org/10.1002/nme.4426
- Xiong, D., Wang, J., Zhang, Y. and Zhao, H. (2010), "Heat conduction in two-dimensional disk models", Phys. Rev. E., 82(3), 030101.
- Xiong, D., Zhang, Y. and Zhao, H. (2014), "Temperature dependence of heat conduction in the fermi-pastaulam-beta lattice with next-nearest-neighbor coupling", Phys. Rev. E., 90(2), 022117.
- Yang, L. (2002), "Finite heat conduction in a 2D disorder lattice", Phys. Rev. Lett., 88(9), 094301. https://doi.org/10.1103/PhysRevLett.88.094301
- Yang, L., Grassberger, P. and Hu, B. (2006), "Dimensional crossover of heat conduction in low dimensions", Phys. Rev. E., 74(6), 062101.
- Zhong, Y., Zhang, Y., Wang, J. and Zhao, H. (2012), "Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions", Phys. Rev. E., 85(6), 060102.
Cited by
- Non-equilibrium atomic simulation for Frenkel-Kontorova model with moving dislocation at finite temperature vol.29, pp.11, 2020, https://doi.org/10.1088/1674-1056/abaed4