DOI QR코드

DOI QR Code

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice

  • Liu, Baiyili (HEDPS, CAPT, and LTCS, College of Engineering, Peking University) ;
  • Tang, Shaoqiang (HEDPS, CAPT, and LTCS, College of Engineering, Peking University)
  • Received : 2015.09.23
  • Accepted : 2015.12.23
  • Published : 2016.12.25

Abstract

We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.

Keywords

Acknowledgement

Supported by : NSFC

References

  1. Ai, B. and Hu, B. (2011), "Heat conduction in deformable frenkel-kontorova lattices: Thermal conductivity and negative differential thermal resistance", Phys. Rev. E., 83(1), 011131. https://doi.org/10.1103/PhysRevE.83.011131
  2. Andersen, H.C. (1980), "Molecular dynamics simulations at constant pressure and/or temperature", J. Chem. Phys., 72(4), 2384-2393. https://doi.org/10.1063/1.439486
  3. Barik, D. (2006), "Heat conduction in 2D harmonic lattices with on-site potential", Europhys. Lett., 75(1), 42-48. https://doi.org/10.1209/epl/i2006-10093-9
  4. Berendsen, H.J., Postma, J.V., Van Gunsteren, W.F., DiNola, A.R.H.J. and Haak, J.R. (1984), "Molecular dynamics with coupling to an external bath", J. Chem. Phys., 81(8), 3684-3690. https://doi.org/10.1063/1.448118
  5. Born, M. and Huang, K. (1954), Dynamical Theory of Crystal Lattices, Clarendon, Oxford.
  6. Bussi, G. and Parrinello, M. (2007), "Accurate sampling using Langevin dynamics", Phys. Rev. E., 75(5), 056707. https://doi.org/10.1103/PhysRevE.75.056707
  7. Dhar, A. (2008), "Heat transport in low-dimensional systems", Adv. Phys., 57(5), 457-537. https://doi.org/10.1080/00018730802538522
  8. Dhar, A., Venkateshan, K. and Lebowitz, J.L. (2011), "Heat conduction in disordered harmonic lattices with energy-conserving noise", Phys. Rev. E., 83(2), 021108. https://doi.org/10.1103/PhysRevE.83.021108
  9. Giardina, C., Livi, R., Politi, A. and Vassalli, M. (2000), "Finite thermal conductivity in 1D lattices", Phys. Rev. L., 84(10), 2144-2147. https://doi.org/10.1103/PhysRevLett.84.2144
  10. Hatano, T. (1999), "Heat conduction in the diatomic toda lattice revisited", Phys. Rev. E., 59(1), R1-R4.
  11. Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A., 31(3), 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  12. Jackson, E.A. and Mistriotis, A.D. (1989), "Thermal conductivity of one-and two-dimensional lattices", J. Phys. Condens. Matt., 1(7), 1223-1238. https://doi.org/10.1088/0953-8984/1/7/006
  13. Karpov, E.G., Park, H.S. and Liu, W.K. (2007), "A phonon heat bath approach for the atomistic and multiscale simulation of solids", Int. J. Numer. Meth. Eng., 70(3), 351-378. https://doi.org/10.1002/nme.1884
  14. Lepri, S., Livi, R. and Politi, A. (2003), "Thermal conduction in classical low-dimensional lattices", Phys. Rep., 377(1), 1-80. https://doi.org/10.1016/S0370-1573(02)00558-6
  15. Lippi, A. and Livi, R. (2000), "Heat conduction in two-dimensional nonlinear lattices", J. Stat. Phys., 100(5), 1147-1172. https://doi.org/10.1023/A:1018721525900
  16. Nishiguchi, N., Kawada, Y. and Sakuma, T. (1992), "Thermal conductivity in two-dimensional monatomic non-linear lattices", J. Phys. Condens. Matt., 4(50), 10227-10236. https://doi.org/10.1088/0953-8984/4/50/011
  17. Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81(1), 511-519. https://doi.org/10.1063/1.447334
  18. Pang, G. and Tang, S. (2011), "Time history kernel functions for square lattice", Comput. Mech., 48(6), 699-711. https://doi.org/10.1007/s00466-011-0615-4
  19. Savin, A.V. and Kosevich, Y.A. (2014), "Thermal conductivity of molecular chains with asymmetric potentials of pair interactions", Phys. Rev. E., 89(3), 032102.
  20. Tang, S. (2008), "A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids", J. Comput. Phys., 227(8), 4038-4062. https://doi.org/10.1016/j.jcp.2007.12.012
  21. Tang, S. (2010), "A two-way interfacial condition for lattice simulations", Adv. Appl. Math. Mech., 2, 45-55.
  22. Tang, S. and Liu, B. (2015), "Heat jet approach for atomic simulations at finite temperature", Comm. Comput. Phys., 18(5), 1445-1460. https://doi.org/10.4208/cicp.240714.260315a
  23. Tang, S., Zhang, L., Ying, Y.P. and Zhang, Y.J. "A finite difference approach for finite temperature multiscale computations", Preprint.
  24. Wang, X. and Tang, S. (2013), "Matching boundary conditions for lattice dynamics", Int. J. Numer. Meth. Eng., 93(12), 1255-1285. https://doi.org/10.1002/nme.4426
  25. Xiong, D., Wang, J., Zhang, Y. and Zhao, H. (2010), "Heat conduction in two-dimensional disk models", Phys. Rev. E., 82(3), 030101.
  26. Xiong, D., Zhang, Y. and Zhao, H. (2014), "Temperature dependence of heat conduction in the fermi-pastaulam-beta lattice with next-nearest-neighbor coupling", Phys. Rev. E., 90(2), 022117.
  27. Yang, L. (2002), "Finite heat conduction in a 2D disorder lattice", Phys. Rev. Lett., 88(9), 094301. https://doi.org/10.1103/PhysRevLett.88.094301
  28. Yang, L., Grassberger, P. and Hu, B. (2006), "Dimensional crossover of heat conduction in low dimensions", Phys. Rev. E., 74(6), 062101.
  29. Zhong, Y., Zhang, Y., Wang, J. and Zhao, H. (2012), "Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions", Phys. Rev. E., 85(6), 060102.

Cited by

  1. Non-equilibrium atomic simulation for Frenkel-Kontorova model with moving dislocation at finite temperature vol.29, pp.11, 2020, https://doi.org/10.1088/1674-1056/abaed4