DOI QR코드

DOI QR Code

The observation of microstructures in the trigonal shape memory alloys

  • Liu, Tzu-Cheng (Department of Materials Science and Engineering, NCTU) ;
  • Tsou, Nien-Ti (Department of Materials Science and Engineering, NCTU)
  • Received : 2015.06.06
  • Accepted : 2015.12.15
  • Published : 2016.12.25

Abstract

The trigonal shape memory alloys (SMAs) have a great potential to be utilized as the applications with special purposes, such as actuators with high operation frequency. Most studies on the trigonal microstructures typically focus on the well-known classic herringbone pattern, but many other patterns are also possible, such as non-classic herringbone, toothbrush and checkerboard patterns. In the current work, a systematic procedure is developed to find all possible laminate twin microstructures by using geometrically linear compatibility theory. The procedure is verified by SEM images with the information of crystallographic axes of unitcells obtained by EBSD, showing good agreement. Many interesting trigonal R-phase patterns are found in the specimen. Then, their incompatibility are analyzed with nonlinear compatibility theory. The relationship between such incompatibility and the likelihood of occurrence of the microstructures is revealed. The current procedure is rapid, computationally efficient and sufficiently general to allow further extension to other crystal systems and materials.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology (MOST) Taiwa

References

  1. Ball, J.M. and James, R.D. (1989), Fine Phase Mixtures as Minimizers of Energy Analysis and Continuum Mechanics, Springer.
  2. Bhattacharya, K. (2003), Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, 2, Oxford University Press.
  3. Fan, G., Zhou, Y., Otsuka, K. and Ren, X. (2006), "Ultrahigh damping in R-phase state of Ti-Ni-Fe alloy", Appl. Phys. Lett., 89(16), 161902. https://doi.org/10.1063/1.2363173
  4. Goldsztein, G.H. (2001), "The effective energy and laminated microstructures in martensitic phase transformations", J. Mech. Phys. Sol., 49(4), 899-925. https://doi.org/10.1016/S0022-5096(00)00057-0
  5. Hane, K.F. and Shield, T. (1999), "Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys", Acta Mater., 47(9), 2603-2617. https://doi.org/10.1016/S1359-6454(99)00143-3
  6. Hane, K.F. and Shield, T.W. (2000), "Microstructure in a cubic to orthorhombic transition", J. Elast. Phys. Sci. Sol., 59(1-3), 267-318. https://doi.org/10.1023/A:1011051204615
  7. Kastner, O., Eggeler, G., Weiss, W. and Ackland, G.J. (2011), "Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations", J. Mech. Phys. Sol., 59(9), 1888-1908. https://doi.org/10.1016/j.jmps.2011.05.009
  8. Levitas, V.I., Idesman, A.V. and Preston, D.L. (2004), "Microscale simulation of martensitic microstructure evolution", Phys. Rev. Lett., 93(10), 105701. https://doi.org/10.1103/PhysRevLett.93.105701
  9. Miyazaki, S. and Ishida, A. (1999), "Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films", Mater. Sci. Eng.: A, 273, 106-133.
  10. Murakami, Y., Ohba, T., Morii, K., Aoki, S. and Otsuka, K. (2007), "Crystallography of stress-induced (trigonal) martensitic transformation in Au-49.5 at.% Cd alloy", Acta Mater., 55(9), 3203-3211. https://doi.org/10.1016/j.actamat.2007.01.019
  11. Otsuka, K. and Ren, X. (2005), "Physical metallurgy of Ti-Ni-based shape memory alloys", Prog. Mater. Sci., 50(5), 511-678. https://doi.org/10.1016/j.pmatsci.2004.10.001
  12. Roytburd, A., Kim, T., Su, Q., Slutsker, J. and Wuttig, M. (1998), "Martensitic transformation in constrained films", Acta Mater., 46(14), 5095-5107. https://doi.org/10.1016/S1359-6454(98)00165-7
  13. Shu, Y. and Yen, J. (2007), "Pattern formation in martensitic thin films", Appl. Phys. Lett., 91(2), 021908. https://doi.org/10.1063/1.2756320
  14. Shu, Y. and Yen, J. (2008), "Multivariant model of martensitic microstructure in thin films", Acta Mater., 56(15), 3969-3981. https://doi.org/10.1016/j.actamat.2008.04.018
  15. Tomozawa, M., Kim, H.Y. and Miyazaki, S. (2006), "Microactuators using R-phase transformation of sputter-deposited Ti-47.3 Ni shape memory alloy thin films", J. Intellig. Mater. Syst. Struct., 17(12), 1049-1058. https://doi.org/10.1177/1045389X06064883
  16. Tsou, C. and Huber, J. (2010), "Compatible domain arrangements and poling ability in oriented ferroelectric films", Contin. Mech. Thermodyn., 22, 203-219. https://doi.org/10.1007/s00161-010-0136-y
  17. Tsou, C. and Huber, J. (2010), "Compatible domain structures and the poling of single crystal ferroelectrics", Mech. Mater., 42(7), 740-753. https://doi.org/10.1016/j.mechmat.2010.04.004
  18. Tsou, C.H., Chen, C.S. and Wu, S.K. (2015), "Classification and analysis of trigonal martensite laminate twins in shape memory alloys", Acta Mater., 89, 193-204. https://doi.org/10.1016/j.actamat.2015.02.006
  19. Tsou, H.J. and Shu, Y. (2012), "A sharp interface model of compatible twin patterns in shape memory alloys", Smart Mater. Struct., 21(9), 094010. https://doi.org/10.1088/0964-1726/21/9/094010
  20. Wu, P., Ma, X., Zhang, J. and Chen, L. (2008), "Phase-field simulations of stress-strain behavior in ferromagnetic shape memory alloy Ni 2 MnGa", J. Appl. Phys., 104(7), 073906. https://doi.org/10.1063/1.2988898
  21. Zhang, J. and Chen, L. (2005), "Phase-field model for ferromagnetic shape-memory alloys", Philosoph. Mag. Lett., 85(10), 533-541. https://doi.org/10.1080/09500830500385527
  22. Zhong, Y., Gall, K. and Zhu, T. (2012), "Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars", Acta Mater., 60(18), 6301-6311. https://doi.org/10.1016/j.actamat.2012.08.004