DOI QR코드

DOI QR Code

Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels

  • Toh, William (School of Mechanical and Aerospace Engineering, Nanyang Technological University) ;
  • Ding, Zhiwei (Institute of High Performance Computing) ;
  • Ng, Teng Yong (School of Mechanical and Aerospace Engineering, Nanyang Technological University) ;
  • Liu, Zishun (International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University)
  • Received : 2015.11.04
  • Accepted : 2015.11.09
  • Published : 2016.12.25

Abstract

Undergoing large volumetric changes upon incremental environmental stimulation, hydrogels are interesting materials which hold immense potentials for utilization in a wide array of applications in diverse industries. Owing to the large magnitudes of deformation it undergoes, swelling induced instability is a commonly observed sight in all types of gels. In this work, we investigate the instability of photo-thermal sensitive hydrogels, produced by impregnating light absorbing nano-particles into the polymer network of a temperature sensitive hydrogel, such as PNIPAM. Earlier works have shown that by using lights of different intensities, these hydrogels follow different swelling trends. We investigate the possibility of utilizing this fact for remote switching applications. The analysis is built on a thermodynamic framework of inhomogeneous large deformation of hydrogels and implemented via commercial finite element software, ABAQUS. Various examples of swelling induced instabilities, and its corresponding dependence on light intensity, will be investigated. We show that the instabilities that arise have their morphologies dependent on the light intensity.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Barros, W., De Azevedo, E.N. and Engelsberg, M. (2012), "Surface pattern formation in a swelling gel", Soft Matt., 8(32), 8511-8516. https://doi.org/10.1039/c2sm25617g
  2. Bertoldi, K., Boyce, M.C., Deschanel, S., Prange, S.M. and Mullin, T. (2008), "Mechanics of deformationtriggered pattern transformations and superelastic behavior in periodic elastomeric structures", J. Mech. Phys. Sol., 56(8), 2642-2668. https://doi.org/10.1016/j.jmps.2008.03.006
  3. Chen, C.M. and Yang, S. (2012), "Wrinkling instabilities in polymer films and their applications", Poly. Int., 61(7), 1041-1047. https://doi.org/10.1002/pi.4223
  4. Ding, Z., Liu, Z.S., Hu, J., Swaddiwudhipong, S. and Yang, Z. (2013), "Inhomogeneous large deformation study of temperature-sensitive hydrogel", Int. J. Sol. Struct., 50(16), 2610-2619. https://doi.org/10.1016/j.ijsolstr.2013.04.011
  5. DuPont Jr, S.J., Cates, R.S., Stroot, P.G. and Toomey, R. (2010), "Swelling-induced instabilities in microscale, surface-confined poly(N-isopropylacryamide) hydrogels", Soft Matt., 6(16), 3876-3882. https://doi.org/10.1039/c0sm00021c
  6. Guvendiren, M., Yang, S. and Burdick, J.A. (2009), "Swelling-induced surface patterns in hydrogels with gradient crosslinking density", Adv. Func. Mater., 19(19), 3038-3045. https://doi.org/10.1002/adfm.200900622
  7. Hong, W., Liu, Z.S. and Suo, Z. (2009), "Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load", Int. J. Sol. Struct., 46(17), 3282-3289. https://doi.org/10.1016/j.ijsolstr.2009.04.022
  8. Kang, D.H., Kim, S.M., Lee, B., Yoon, H. and Suh, K.Y. (2013), "Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays", Anal., 138(21), 6230-6242. https://doi.org/10.1039/c3an01119d
  9. Kang, M.K. and Huang, R. (2010), "A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints", J. Appl. Mech., 77(6), 61004-61012. https://doi.org/10.1115/1.4001715
  10. Lee, H., Zhang, J., Jiang, H. and Fang, N.X. (2012), "Prescribed pattern transformation in swelling gel tubes by elastic instability", Phys. Rev. Lett., 108(21), 214304-214304. https://doi.org/10.1103/PhysRevLett.108.214304
  11. Liu, Z.S., Hong, W., Suo, Z., Swaddiwudhipong, S. and Zhang, Y. (2010), "Modeling and simulation of buckling of polymeric membrane thin film gel", Comput. Mater. Sci., 49(1), S60-S64. https://doi.org/10.1016/j.commatsci.2009.12.036
  12. Liu, Z.S., Swaddiwudhipong, S., Cui, F.S., Hong, W., Suo, Z. and Zhang, Y.W. (2011), "Analytical solutions of polymeric gel structures under buckling and wrinkle", Int. J. Appl. Mech., 3(2), 235-235. https://doi.org/10.1142/S1758825111000968
  13. Marcombe, R., Cai, S., Hong, W., Zhao, X., Lapusta, Y. and Suo, Z. (2010), "A theory of constrained swelling of a pH-sensitive hydrogel", Soft Matt., 6(4), 784-784. https://doi.org/10.1039/b917211d
  14. Mora, T. and Boudaoud, A. (2006), "Buckling of swelling gels", Eur. Phys. J. E, Soft Matt., 20(2), 119-124. https://doi.org/10.1140/epje/i2005-10124-5
  15. Mullin, T., Deschanel, S., Bertoldi, K. and Boyce, M.C. (2007), "Pattern transformation triggered by deformation", Phys. Rev. Lett., 99(8), 084301. https://doi.org/10.1103/PhysRevLett.99.084301
  16. Okumura, D., Inagaki, T. and Ohno, N. (2015), "Effect of prestrains on swelling-induced buckling patterns in gel films with a square lattice of holes", Int. J. Sol. Struct., 58, 288-300. https://doi.org/10.1016/j.ijsolstr.2015.01.015
  17. Okumura, D., Kuwayama, T. and Ohno, N. (2014), "Effect of geometrical imperfections on swellinginduced buckling patterns in gel films with a square lattice of holes", Int. J. Sol. Struct., 51(1), 154-163. https://doi.org/10.1016/j.ijsolstr.2013.09.018
  18. Sershen, S.R., Westcott, S.L., Halas, N.J. and West, J.L. (2000), "Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery", J. Biom. Mater. Res., 51(3), 293-298. https://doi.org/10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T
  19. Sun, J.Y., Xia, S., Moon, M.W., Oh, K.H. and Kim, K.S. (2011), "Folding wrinkles of a thin stiff layer on a soft substrate", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science.
  20. Suzuki, A. and Tanaka, T. (1990), "Phase transition in polymer gels induced by visible light", Nat., 346(6282), 345-347. https://doi.org/10.1038/346345a0
  21. Toh, W., Ding, Z., Yong, N.T. and Liu, Z. (2015), "Wrinkling of a polymeric gel during transient swelling", J. Appl. Mech., 82(6), 061004-061004. https://doi.org/10.1115/1.4030327
  22. Toh, W., Ng, T.Y., Hu, J. and Liu, Z. (2014), "Mechanics of inhomogeneous large deformation of photothermal sensitive hydrogels", Int. J. Sol. Struct., 51(25), 4440-4451. https://doi.org/10.1016/j.ijsolstr.2014.09.014
  23. Trujillo, V., Kim, J. and Hayward, R.C. (2008), "Creasing instability of surface-attached hydrogels", Soft Matt., 4(3), 564-569. https://doi.org/10.1039/b713263h
  24. Wu, G., Xia, Y. and Yang, S. (2014), "Buckling, symmetry breaking, and cavitation in periodically microstructured hydrogel membranes", Soft Matt., 10(9), 1392-1399. https://doi.org/10.1039/C3SM51640G
  25. Yang, S., Khare, K. and Lin, P.C. (2010), "Harnessing surface wrinkle patterns in soft matter", Adv. Func. Mater., 20(16), 2550-2564. https://doi.org/10.1002/adfm.201000034
  26. Yin, J., Bar-Kochba, E. and Chen, X. (2009), "Mechanical self-assembly fabrication of gears", Soft Matt., 5(18), 3469-3474. https://doi.org/10.1039/b904635f
  27. Yoon, J., Bian, P., Kim, J., McCarthy, T.J. and Hayward, R.C. (2012), Local Switching of Chemical Patterns through Light-Triggered Unfolding of Creased Hydrogel Surfaces, Angewandte Chemie International Edition, 51, 7146-7149. https://doi.org/10.1002/anie.201202692
  28. Zhang, X.X., Guo, T.F. and Zhang, Y.W. (2010), "Formation of gears through buckling multilayered filmhydrogel structures", Thin Sol. Film, 518(21), 6048-6051. https://doi.org/10.1016/j.tsf.2010.06.043

Cited by

  1. A Combined Analytical–Numerical Investigation on Photosensitive Hydrogel Micro-Valves vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501034
  2. Voltage-Induced Wrinkle Performance in a Hydrogel by Dielectric Elastomer Actuation vol.10, pp.7, 2018, https://doi.org/10.3390/polym10070697
  3. Recent Advances of the Constitutive Models of Smart Materials - Hydrogels and Shape Memory Polymers vol.12, pp.2, 2016, https://doi.org/10.1142/s1758825120500143
  4. Biomimetic micro/nano structures for biomedical applications vol.35, pp.None, 2016, https://doi.org/10.1016/j.nantod.2020.100980
  5. Hierarchical Self-Assembly of Metal-Ion-Modulated Chitosan Tubules vol.37, pp.43, 2021, https://doi.org/10.1021/acs.langmuir.1c02097
  6. Patterning coexisted micro-/nanostructures for consequential camouflage via mechanical constraint harnessed surface instability vol.119, pp.26, 2016, https://doi.org/10.1063/5.0079596