DOI QR코드

DOI QR Code

Anti-Thrombosis Activity of Sinapic Acid Isolated from the Lees of Bokbunja Wine

  • Kim, Mi-Sun (Department of Food and Nutrition, Andong National University) ;
  • Shin, Woo-Chang (Research Institute, Kooksoondang Brewery Co, Ltd.) ;
  • Kang, Dong-Kyoon (Gyeongsangbukdo Agricultural Research & Extension Services) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
  • Received : 2015.08.31
  • Accepted : 2015.09.18
  • Published : 2016.01.28

Abstract

From the lees of bokbunja wine (LBW) made from Rubus coreanus Miquel, we have identified six compounds (1: trans-4-hydroxycinnamic acid; 2: trans-4-hydroxy-3-methoxycinnamic acid; 3: 3,4-dihydroxycinnamic acid; 4: 4-hydroxy-3-methoxybenzoic acid; 5: 3,5-dimethoxy-4-hydroxybenzoic acid; and 6: 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid)) through silica gel chromatography and UHPLC-MS. The compounds 1-6 showed strong anticoagulation and platelet aggregation inhibitory activities without hemolytic effect against human red blood cells. To date, this is the first report of the in vitro anti-thrombosis activity of sinapic acid. Our results suggest that different cinnamic and benzoic acid derivatives are closely linked to the anti-thrombosis activity of LBW, and sinapic acid could be developed as a promising anti-thrombosis agent.

Keywords

References

  1. Balaji C, Muthukumaran J, Nalini N. 2014. Chemopreventive effect of sinapc acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Hum. Exp. Toxicol. 33: 1253-1268. https://doi.org/10.1177/0960327114522501
  2. Cherng YG, Tsai CC, Chung HH, Lai YW, Kuo SC, Cheng JT. 2013. Antihyperglycemic action of sinapic acid in diabetic rats. J. Agric. Food Chem. 61: 12053-12059. https://doi.org/10.1021/jf403092b
  3. Fabre N, Urizzi P, Souchard JP, Fréchard A, Claparols C, Fourasté I, Moulis C. 2000. An antioxidant sinapic acid ester isolated from Iberis amara. Fitoterapia 71: 425-428 https://doi.org/10.1016/S0367-326X(00)00127-1
  4. Galano A, Francisco-Marquez M, Alvarez-Idaboy JR. 2011. Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys. Chem. Chem. Phys. 13: 11199-11205. https://doi.org/10.1039/c1cp20722a
  5. Karakida F, Ikeyya Y, Tsunakawa M, Yamaguchi T, Ikarashi Y, Takeda S, Aburada M. 2007. Cerebral protective and cognition-improving effects of sinapic acid in rodents. Biol. Pharm. Bull. 30: 514-519. https://doi.org/10.1248/bpb.30.514
  6. Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Park DH, et al. 2010. Sinapic acid attenuates kainic acid-induced neuronal damage in mice. Neuropharmacology 59: 20-30. https://doi.org/10.1016/j.neuropharm.2010.03.012
  7. Kim MS, Kang DK, Shin WC, Sohn HY. 2015. Anti-microbial, anti-oxidant and anti-thrombosis activity of lees of bokbunjawine (Rubus coreanus Miquel). J. Life Sci. 25: 757-764. https://doi.org/10.5352/JLS.2015.25.7.757
  8. Ku SK, Bae JS. 2014. Antiplatelet and antithrombotic activities of purourogallin in vitro and in vivo. BMB Rep. 47: 376-381. https://doi.org/10.5483/BMBRep.2014.47.7.195
  9. Lee HE, Kim DH, Park SJ, Kim JM, Lee YW, Jung JM, et al. 2012. Neuroprotective effect of sinapic acid in a mouse model of amyloid β1-42 protein-induced Alzheimer’s disease. Pharmacol. Biochem. Behav. 103: 260-266. https://doi.org/10.1016/j.pbb.2012.08.015
  10. Nićiforović N, Abramovic H. 2014. Sinapic acid and its derivatives: natural sources and bioactivity. Comp. Rev. Food Sci. Food Safety 13: 34-51. https://doi.org/10.1111/1541-4337.12041
  11. Pari L, Mohamed Jalaludeen A. 2011. Protective role of sinipic acid against arsenic induced toxicity in rats. Chem. Biol. Interact. 194: 40-47. https://doi.org/10.1016/j.cbi.2011.08.004
  12. Roy SJ, Stanely P, Prince M. 2012. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Food Chem. Toxicol. 50: 3984-3989. https://doi.org/10.1016/j.fct.2012.08.017
  13. Sedej L, Saka M, Mandic A, Misan A, Thubas V, Canadanovic-Brunet J. 2012. Buckwheat (Fagopyrum esculentum Moench) grain and fractions: antioxidant compounds and activities. J. Food Sci. 77: C954-C959. https://doi.org/10.1111/j.1750-3841.2012.02867.x
  14. Sohn HY, Kwon CS, Son KH. 2010. Fungicidal effect of prenylated flavonol, papyriflavonol A, isolated from Broussonetia papyrifera (L.) Vent. against Candida albicans. J. Microbiol. Biotechnol. 20: 1397-1402. https://doi.org/10.4014/jmb.1007.07026
  15. Sun XL, Ito H, Masuoka T, Kamei C, Hatano T. 2007. Effect of Polygala tenuifolia root extract on scopolamine-induced impairment of rat spatial cognition in an eight-arm radial maze task. Biol. Pharm. Bull. 30: 1727-1731. https://doi.org/10.1248/bpb.30.1727
  16. Tesaki S, Tanabe S, Ono H, Fukushi E, Kawabata J, Watanabe M. 1998. 4-Hydroxy-3-nitrophenylacetic and sinapic acids as antibacterial compounds from mustard seeds. Biosci. Biotechnol. Biochem. 62: 998-1000. https://doi.org/10.1271/bbb.62.998
  17. Thangarasu Silambarasan T, Manivannan J, Priya MK, Suganya N, Chatterjee S, Raja B. 2015. Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem. Biophy. Res. Commun. 456: 853-859. https://doi.org/10.1016/j.bbrc.2014.12.022
  18. Yoon BH, Jung JW, Lee JJ, Cho YW, Jang CG, Jin CB, et al. 2007. Anxiolytic-like effects of sinapic acid in mice. Life Sci. 81: 234-240. https://doi.org/10.1016/j.lfs.2007.05.007
  19. Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, et al. 2008. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J. Agric. Food Chem. 56: 10265-10272. https://doi.org/10.1021/jf802095g
  20. Zeng X, Zheng J, Fu C, Su H, Sun X, Zhang X, et al. 2013. A newly synthesized sinapic acid derivative inhibits endothelial activation in vitro and in vivo. Mol. Pharmacol. 83: 1099-1108 https://doi.org/10.1124/mol.112.084368
  21. Zou Y, Kim AR, Kim JE, Choi JS, Chung HY. 2002. Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) isolated from Brassica juncea. J. Agric. Food Chem. 50: 5884-5890. https://doi.org/10.1021/jf020496z

Cited by

  1. 함초 씨의 항균, 항산화 및 항혈전 활성 vol.44, pp.4, 2016, https://doi.org/10.4014/mbl.1609.09002
  2. 함초의 부위별 항산화 및 항혈전 활성 vol.44, pp.3, 2016, https://doi.org/10.4014/mbl.1607.07003
  3. Anti-oxidant and Anti-inflammatory Effects of Sinapic Acid in UVB Irradiation-Damaged HaCaT Keratinocytes vol.15, pp.4, 2016, https://doi.org/10.20402/ajbc.2017.0177
  4. 함초의 건조방법에 따른 항산화 및 항혈전 활성의 변화 vol.24, pp.5, 2016, https://doi.org/10.11002/kjfp.2017.24.5.658
  5. Phenolic fractions from nine Trifolium species modulate the coagulant properties of blood plasma in vitro without cytotoxicity towards blood cells vol.70, pp.3, 2018, https://doi.org/10.1111/jphp.12872
  6. Modulation of Oxidative Stress in Thrombin-Stimulated Platelets by Almond by-Product vol.9, pp.6, 2018, https://doi.org/10.1007/s12649-016-9801-0
  7. 쪽잎의 생리활성 평가 vol.29, pp.1, 2016, https://doi.org/10.5352/jls.2019.29.1.52
  8. 동애등에의 항혈전 활성 vol.30, pp.4, 2016, https://doi.org/10.5352/jls.2020.30.4.386
  9. 상동나무 지상부의 항혈전 활성 vol.30, pp.5, 2016, https://doi.org/10.5352/jls.2020.30.5.443
  10. Isolation of Sinapic Acid from Habenaria intermedia D. Don: A New Chemical Marker for the Identification of Adulteration and Substitution vol.6, pp.4, 2020, https://doi.org/10.2174/2215083804666181030101709