DOI QR코드

DOI QR Code

White Light Emission with Quantum Dots: A Review

  • Kim, Nam Hun (School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Jeong, Jaehak (SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU)) ;
  • Chae, Heeyeop (School of Chemical Engineering, Sungkyunkwan University (SKKU))
  • 투고 : 2016.01.21
  • 심사 : 2016.01.30
  • 발행 : 2016.01.30

초록

Quantum dots (QDs) are considered as excellent color conversion and self-emitting materials for display and lighting applications. In this article, various technologies which can be used to realize white light emission with QDs are discussed. QDs have good color purity with a narrow emission spectrum and tunable optical properties with size control capabilities. For white light emission with a color-conversion approach, QDs are combined with blue-emitting inorganic and organic light-emitting diodes (LED) to generate white emission with high energy conversion efficiency and a high color rendering index for various display and lighting applications. Various device structures for self-emitting white QD light-emitting diodes (QD-LED) are also reviewed. Various stacking and patterning technologies are discussed in relation to QD-LED devices.

키워드

참고문헌

  1. S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009). https://doi.org/10.1038/nphoton.2009.32
  2. Z. Yang, X. Li, Y. Yang, X. Li, and J. Lumin. 707, 122-123 (2007).
  3. N. C. George, K.A. Denault, and R. Seshadri, Annu. Rev. Mater. Res. 43, 481 (2013). https://doi.org/10.1146/annurev-matsci-073012-125702
  4. K. Marrin, LEDs Magazine 10, 41 (2013).
  5. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5, 763 (2008). https://doi.org/10.1038/nmeth.1248
  6. V. Wood and V. Bulovic, Nano Rev. 1, 5202 (2010). https://doi.org/10.3402/nano.v1i0.5202
  7. S. Kim, S. H. Im, and S. W. Kim, Nanoscale 5, 5205 (2013). https://doi.org/10.1039/c3nr00496a
  8. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). https://doi.org/10.1021/ja00072a025
  9. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater. 12, 1311 (2000).
  10. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, Adv. Mater. 22, 3076 (2010). https://doi.org/10.1002/adma.201000525
  11. S. Nizamoglu, E. Mutlugun, T. Ozel, H.V. Demir, S. Sapra, and N. Gaponik, A. Eychmuller, Appl. Phys. Lett. 92, 113110 (2008). https://doi.org/10.1063/1.2898892
  12. W.-S. Song, and H. Yang, Chem. Mater. 24, 1961 (2012). https://doi.org/10.1021/cm300837z
  13. D.-Y. Jo, H. Yang, and J. Lumin. 166, 227 (2015). https://doi.org/10.1016/j.jlumin.2015.05.043
  14. S. Jun, J. Lee, and E. Jang, ACS Nano 7, 1472 (2013). https://doi.org/10.1021/nn3052428
  15. J.-H. Jo, J.-H. Kim, S.-H. Lee, H. S. Jang, D. S. Jang, J. C. Lee, K. U. Park, Y. Choi, C. Ha, and H. Yang, J. Alloys Compd. 647, 6 (2015). https://doi.org/10.1016/j.jallcom.2015.05.245
  16. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Buloviae, Nano Lett. 7, 2196 (2007). https://doi.org/10.1021/nl0703424
  17. A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, Small 4, 2143 (2008). https://doi.org/10.1002/smll.200800350
  18. J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J.E. Halpert, P. Anikeeva, L. A. Kim, V. Bulovic, and M. G. Bawendi, Angewandte Chemie International Edition 45, 5796 (2006). https://doi.org/10.1002/anie.200600317
  19. S. Coe-Sullivan, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Ph.D. (2005).
  20. W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, Adv. Mater. 26, 6387 (2014). https://doi.org/10.1002/adma.201400139
  21. C.-Y.H. Ki-Heon Lee, Hee-Don Kang, Heejoo Ko, Changho Lee, Jonghyuk Lee, NoSoung Myoung, Sang-Youp Yim, and Heesun Yang, ACS Nano, 10.1021/acsnano.5b05513 (2015).
  22. T. H. Kim, D. Y. Chung, J. Ku, I. Song, S. Sul, D. H. Kim, K.S. Cho, B. L. Choi, J. Min Kim, S. Hwang, and K. Kim, Nat. Commun. 4, 2637 (2013). https://doi.org/10.1038/ncomms3637
  23. X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, Langmuir 23, 12555 (2007). https://doi.org/10.1021/la701555n
  24. M. A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2005).
  25. J. H. Kim, K. H. Lee, H. D. Kang, B. Park, J. Y. Hwang, H. S. Jang, Y. R. Do, and H. Yang, Nanoscale 7, 5363 (2015). https://doi.org/10.1039/C5NR00426H
  26. L. Li, A. Pandey, D. J. Werder, B.P. Khanal, J. M. Pietryga, and V. I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011). https://doi.org/10.1021/ja108261h
  27. B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, Nanoscale 5, 3514 (2013). https://doi.org/10.1039/c3nr33613a
  28. P. H. Chuang, C. C. Lin, and R. S. Liu, ACS Appl. Mater. Interfaces 6, 15379 (2014). https://doi.org/10.1021/am503889z
  29. T.-H. Kim, K.-S. Cho, E.K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B.L. Choi, Y. Kuk, J. M. Kim, and K. Kim, Nat. Photonics 5, 176 (2011). https://doi.org/10.1038/nphoton.2011.12
  30. K. Yu and Y. Han, Soft Matter 2, 705 (2006). https://doi.org/10.1039/B602880M
  31. W. Cheng, N. Park, M.T. Walter, M.R. Hartman, and D. Luo, Nat. Nanotechnol. 3, 682 (2008). https://doi.org/10.1038/nnano.2008.279
  32. A. C. Arango, D. C. Oertel, Y. F. Xu, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 860 (2009). https://doi.org/10.1021/nl803760j
  33. K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, Appl. Phys. Lett. 86, 154106 (2005). https://doi.org/10.1063/1.1900303
  34. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, Nat. Commun. 6, 7149 (2015). https://doi.org/10.1038/ncomms8149
  35. R. H. Kim, D. H. Kim, J. L. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. M. Yao, M. Li, Z. J. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. G. Huang, Z. Kang, and J. A. Rogers, Nat. Mater. 9, 929 (2010). https://doi.org/10.1038/nmat2879
  36. M. S. White, M. Kaltenbrunner, E. D. Glowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, and N. S. Sariciftci, Nat. Photonics 7, 811 (2013). https://doi.org/10.1038/nphoton.2013.188
  37. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 8, 494 (2009). https://doi.org/10.1038/nmat2459
  38. C. Wang, D. Hwang, Z. B. Yu, K. Takei, J. Park, T. Chen, B. W. Ma, and A. Javey, Nat. Mater. 12, 899 (2013). https://doi.org/10.1038/nmat3711
  39. N. Kim, J. Lee, H. An, C. Pang, S.M. Cho, and H. Chae, J. Mater. Chem. C 2, 9800 (2014). https://doi.org/10.1039/C4TC01780C

피인용 문헌

  1. -RNA-mediated intense white-light-emitting colloidal CdSe nanostructures in aqueous medium – enhanced photophysics and porous morphology induced by conformational change in RNA vol.7, pp.3, 2019, https://doi.org/10.1039/C8TC05560B