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ABSTRACT : Many researchers have evaluated the influence of vegetation cover on slope stability. However, due to the extensive 

variety of site conditions and vegetation types, different studies have often provided inconsistent results, especially when evaluating 

in different regions. Therefore, additional studies need to be conducted to identify the positive impacts of vegetation cover for slope 

stabilization. This study used the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to predict 

the occurrence of landslides in a watershed in Jinbu-Myeon, Pyeongchang-gun, Korea. The influence of vegetation cover was assessed 

by spatially and temporally comparing the predicted landslides corresponding to multiple trials of cohesion values (which include the 

role of root cohesion) and real observed landslide scars to back-calculate the contribution of vegetation cover to slope stabilization. 

The lower bound of cohesion was defined based on the fact that there are no unstable cells in the raster stability map at initial 

conditions, and the modified success rate was used to evaluate the model performance. In the next step, the most reliable value 

representing the contribution of vegetation cover in the study area was applied for landslide assessment. The analyzed results showed 

that the role of vegetation cover could be replaced by increasing the soil cohesion by 3.8 kPa. Without considering the influence 

of vegetation cover, a large area of the studied watershed is unconditionally unstable in the initial condition. However, when tree 

root cohesion is taken into account, the model produces more realistic results with about 76.7% of observed unstable cells and 78.6% 

of observed stable cells being well predicted.
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1. Introduction

The increasing trend of landslides in mountainous and 

hilly areas of Korea in recent decades has set off an alarm 

for researchers to find more reliable methods for landslide 

early warning and prediction. However, analyzing the stability 

of natural forested slopes has never been an easy task because 

it depends on numerous factors those related to the effects of 

vegetation such as the influence of trees on soil reinforcement, 

soil moisture distribution and the amount of rainwater reaching 

the ground. However, many assumptions, especially the 

hypothesis of ignoring the role of vegetation cover in slope 

stabilization, are still needed to identify the remaining unknown 

variables.

Tree roots are considered to be a major contributor to soil 

strength and slope stability (O’Loughlin, 1974; O’Loughlin 

& Ziemer, 1982; Abe & Ziemer, 1991; Ali & Osman, 2008; 

Kim et al., 2010b; Lee et al., 2012b; Kim et al., 2013). However, 

assessment of this contribution remains an unsolved problem 

(Frank et al., 2009). An analysis of aerial photographs of 

landslides in Pyeongchang, Korea during 2006 by the Korea 

Forest Research Institute (KFRI) demonstrated that landslides 

occurred six times more frequently in logged areas and 

monoculture forests than in mixed or natural forests (Kim 

et al., 2010b). Additionally, landslide frequency and area 

have been reported to increase drastically in the 3～10 years 

following logging (O’Loughlin & Ziemer, 1982). Another 

study by Swanston & Marion (1991) pointed out a 3.5 times 

greater landslide rate in harvested areas than in unharvested 

areas over approximately 20 years in Southeast Alaska. Also, 

the frequency of landslides in logged areas was found to be 

nine times higher than that in unlocked forest areas around 

Vancouver Island, BC, Canada (Jakob, 2000).

Trees have significant effects on shallow landslide develop-

ment in steep, forested watersheds during severe storm events 

(Kim et al., 2013; Schwarz et al., 2013). Landslide scars 

often reveal broken roots tendrils, suggesting that the tensile 

strength of the roots was mobilized during failure (Schmidt 
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et al., 2001). Presumably, root systems contribute significantly 

to the stability of many forested slopes by binding the soil 

mass and by helping to anchor the soil mantle to the sub-

stratum (O’Loughlin, 1974). Tree roots are known to reinforce 

soil by increasing soil shear strength. However, few studies 

have quantified soil reinforcement by tree roots because of 

some experimental difficulties (Kim et al., 2010b). Quantitatively 

analyzing the soil reinforcement caused by roots has many 

difficulties because root structures are easy to be destroyed 

during the assessment.

In short-term assessment, O’Loughlin (1974) stated that 

vegetation often affects the stability of slopes primarily in 

two ways: (1) by removing soil moisture and reducing soil 

pore water pressure through evapotranspiration and (2) by 

mechanically reinforcing the soil with tree roots and increasing 

the surcharge on the slope soil mantle. Mechanical effects, 

such as root reinforcement, act directly whereas hydrological 

effects, such as water uptake, act indirectly (Kim et al., 

2010b). Among the two, the latter factor is not particularly 

important for shallow landslides that occur during an extended 

rainy season (Sidle & Ochiai, 2006). Therefore, the rainfall 

interception model was not employed in this study because 

rainfall interception has little impact on landslide initiation 

during the short duration of a single rainfall event (Kim et 

al., 2013).

This study applied Transient Rainfall Infiltration and Grid- 

based Regional Slope-stability analysis (TRIGRS) (Baum et 

al., 2009) to model the heavy storm triggered landslide event 

of 15 July 2006 in Jinbu-Myeon, Pyeongchang-gun, Korea. 

In this model, the physical parameters of soil, the Digital 

Elevation Model (DEM), and the real observed landslide 

scars as well as their rainstorm triggering are known. The 

influence of vegetation cover was considered in terms of 

tree root cohesion which was calculated by a trial-and-error 

method until the best match between the observed and 

predicted landslides was obtained. In the final step, when 

the tree root cohesion is estimated, the outputs of TRIGRS 

model is evaluated again by comparing with the observed 

landslide scars in locations, the slope angle of landslide 

initiation, and soil depth in unstable areas. Several grid cells 

were also examined to study the role of grid cell dimension 

on the precision of landslide prediction. These evaluations 

are the evidence to conclude if TRIGRS is suitable for 

applying in the study area.

2. Shear Strength of Forest Soil

The main effect of vegetation cover on the shear strength 

of forest soil is induced by the mechanical reinforcement of 

the soil caused by tree roots and the increased surcharge on 

the slope soil mantle. However, it is difficult to measure the 

strength of forest soil directly, and investigations at previously 

failed sites with accurate soil data are rare (Sidle & Ochiai, 

2006). Many studies have reported a positive contribution 

of tree roots on the shear strength of soil; however, the 

question of how to best evaluate this influence remaining. 

Most studies have concluded that roots have only a negligible 

influence on the frictional component of soil strength due 

to their random orientation (Ziemer, 1981; O’Loughlin & 

Ziemer, 1982; Wu & Sidle, 1995; Sidle & Ochiai, 2006; Ali 

& Osman, 2008). Several studies have concluded that the 

root system contributes to shear strength by providing an 

additional cohesion component (∆C) in the Mohr-Coulomb 

equation (Eq. (1)) (Gray & Megahan, 1981; O’Loughlin & 

Ziemer, 1982; Buchanan & Savigny, 1990; Abe & Ziemer, 

1991; Schmidt et al., 2001), which is often defined as the 

“apparent cohesion” (Swanston, 1970; Wu et al., 1979):

   ′ ′  (1)

where 

c’ is the effective cohesion of the soil (kN/m
2
)

 ′  is the effective internal angle of friction (degree)

∆C is the apparent cohesion provided by roots (kN/m
2
)

 is the normal stress due to the weight of the soil 

(kN/m
2
), and 

u is the soil pore water pressure (kN/m
2
)

The weight of trees might increase or decrease the overall 

slope stability depending on the type of soil and the slope 

parameters. The weight of trees influences slope stability in 

a positive way if due to the tree weight, the driving force 

does not exceed the resisting force and vice versa (Steinacher 

et al., 2009). More specifically, it is not possible to provide 

general conclusions about the positive or negative influence 

of tree surcharge on slope stability in cohesive soils (Gray, 

1973). However, in non-cohesive soils, tree weight has a 

neutral to slightly positive effect for slope-parallel or curved 

sliding planes below the depth of the root system (Steinacher 

et al., 2009). Gray (1973) concluded that the tree surcharge 
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has a beneficial effect on stability, particularly when critical, 

saturated conditions develop in a slope. However, overall, 

consideration of tree surcharge as a negative impact may be 

neglected in most cases because it is not significant. This 

weight is often distributed uniformly throughout the entire 

area, and in most mature forest situations, the total weight 

of the soil and parent materials overlying a potential failure 

plane far exceeds the weight of the forest crop (Steinacher 

et al., 2009). Moreover, the positive influence of root rein-

forcement is more important than any adverse tree surcharge 

effects related to bank stability (O’Loughlin & Ziemer, 1982; 

Aberrnethy & BRutherfurd, 2000; Sidle & Ochiai, 2006). 

In this study, as the soil cover layer is granular, field 

observation after the sliding event showed that the cover 

layer was almost fully saturated at failure. Therefore, it is 

possible to ignore the influence of tree surcharge for simplicity, 

and the mechanical effect of trees on soil shear strength is 

represented by the tree root cohesion (apparent cohesion).

3. Previous Methods for Determination 

of Root Cohesion

As discussed above, the contribution of tree roots to 

increasing soil shear strength is defined as the additional 

apparent cohesion that is added to the soil cohesion. According 

to O’Loughlin & Ziemer (1982), studies related to root 

strength and slope stability have been directed mainly in 

four distinct areas of endeavor: 1) direct field and laboratory 

measurement of the contribution to soil strength imparted 

by roots; 2) indirect computation of the contribution to soil 

strength made by roots using data of root strength, root 

density, root distribution, and root morphology; 3) development 

of theoretical slope stability analyses, in particular “back- 

analyses,” using slope and soil physical data to estimate the 

contribution to soil strength made by roots; and 4) laboratory 

studies of the individual strengths of roots sampled from 

living trees and the rates at which root strength is lost after 

tree cutting.

Terwilliger & Waldron (1990), Abe & Ziemer (1991), 

Ali & Osman (2008), and Docker & Hubble (2008) applied 

the direct method in the laboratory using modified direct 

shear tests and laboratory measurements, Buroughs & Thomas 

(1977) and Gray & Megahan (1981) observed the concentration 

of intermingled lateral roots combined with the tensile strength 

of individual roots to estimate the total tensile strength per 

unit area of soil. Among indirect computations, Wu et al. 

(1979) developed a model that used only root critical tensile 

strength and the cross-sectional area of roots crossing the 

failure surface to estimate the shear strength of forested soil. 

All of these studies emphasized an increase in shear strength 

due to root reinforcement. The back-calculation approach 

was first applied by Gray (1973), who performed stability 

analyzes on failed slopes in Alaska. Using a simple form 

of the “method of slices”, he assumed a safety factor of 1.0 

at failure and derived values for ca by back-calculation. It 

is widely accepted that the shear strength parameters obtained 

by back-analysis are more reliable than those obtained by 

laboratory or in-situ testing (Hussain et al., 2010; Zhang et 

al., 2012).

Estimates of vegetation root strength have been made 

from back-calculations of previously failed hillslopes where 

geotechnical and hydrological parameters were known or 

assumed (Swanston, 1970; Van Asch, 1984; Sidle & Ochiai, 

2006). According to Lee & Hencher (2014), detailed studies 

of landslides including back-analysis is one of the most 

fruitful ways of advancing knowledge of landslide mechanisms 

to allow improved design and land management. In the back- 

analysis, the slope has already failed and the objective is 

to determine the value of some parameters in the analysis. 

In more detail, the factor of safety is set equal to one, and 

the values of an unknown are solved for (Skaugset, 1997). This 

method provides an estimate of the magnitude of reinforcement 

imparted to soils by tree roots (O’Loughlin, 1974) and may 

represent the best spatially distributed data available for root 

cohesion in the vicinity of a landslide, assuming that other 

input data are accurate (Sidle & Ochiai, 2006).

4. Application of Trigrs for Stability 

Assessment

This study applied TRIGRS (Baum et al., 2009) to predict 

the occurrence of landslides in the study area. The program 

has been used widely in many countries in recent years (Yuan 

et al., 2005; Salciarini et al., 2006; Baum et al., 2010; Liao 

et al., 2011; Kim et al., 2013; Park et al., 2013; Bordoni 

et al., 2014). TRIGRS is a coupled hydro-mechanical slope 
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Fig. 1. Conceptual framework of the TRIGRS model: Ksat - the 

saturated hydraulic conductivity (m/sec), SD - the soil 

depth (m), θs - the saturated volumetric water content, 

θr - the residual volumetric water content, Inf - the Initial 

infiltration rate (m/sec), IGW - Initial groundwater level 

(m), D - Diffusivity (m
2
/s)

stability assessment model that combines modules for infil-

tration and subsurface flow of storm water with those for 

runoff routing and slope stability. The infiltration process is 

modeled by a simplified analytical solution of Richards’ 

equation (Eq. (2)), which requires a shallow, quasi-saturated 

soil cover at the beginning of the simulation. The solution of 

Iverson (2000) contains both steady and transient components. 

The steady infiltration rate, saturated hydraulic conductivity, 

and slope angle determine the steady (initial) flow direction. 

The transient component assumes one-dimensional, vertical, 

downward flow. This simplified Richards’ equation in TRIGRS 

has the practical application that, according to Iverson (2000), 

the horizontal components can be neglected when the ratio 

of the soil depth to the square root of the contribution area 


   is much less than unity.
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where

 is the ground-water pressure head (m);

  is the volumetric water content;

 is the time (sec);

 is the depth below the ground surface (m), and

 is the slope angle (degree);

  is the hydraulic conductivity in Z direction (m/s).

In TRIGRS, the FS value is calculated for transient pressure 

heads at multiple depths Z by using an infinite slope stability 

analysis (Taylor, 1948). In this analysis, the failure of an 

infinite slope is characterized by the ratio of the resisting 

basal Coulomb friction to the gravitationally induced downslope 

basal driving stress. This ratio is calculated at an arbitrary 

depth Z for each grid cell by the Eq. (3).
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where

 is the ground-water pressure head as a function of depth 

Z and time t (m); 




 is the unit weight of water (kN/m
3
), and



 are the unit weights of soil (kN/m

3
).

Failure is predicted when Fs < 1, and stability hold when 

Fs ≥ 1. The state of limiting equilibrium exists when Fs = 1.

In order to take the contribution of tree roots into account 

in TRIGRS, as discussed in the previous sections, a com-

ponent of tree cohesion (ΔC) is added, so Eq. (3) can be 

revised as following.



 
tan

tan ′




sincos

 ′ 

tan ′

 (4)

The conceptual methodology of the TRIGRS model with 

the input parameters and output maps is illustrated in Fig. 1.

5. Landslide Evaluation

When comparing the actual with the predicted landslide 

grid-based maps, it is clear that four types of outcomes are 

possible: 1) actual sliding cells are predicted as unstable 

cells; 2) actual sliding cells are predicted as stable cells; 3) 

actual stable cells are predicted as unstable cells; and 4) 

actual stable cells are predicted as stable cells. Among the 

four types, type 1 and type 4 are classified as successfully 

predicted; type 2 and type 3 are classified as failed prediction. 

Based on the above classification, Montgomery & Dietrich 

(1994) introduced the Success Rate (SR) for landslide evaluation 

(Eq. (5)). This index takes type 1 into account but ignores 
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the other three types. 

SR =
number of successfully predicted landslides

(5)
total number of actual landslides

 

From the equation, it is clear that by applying SR as a 

performance indicator, slope failure is overestimated (Huang 

& Kao, 2006; Bischetti & Chiaradia, 2010). As an extreme 

case, for example, if the whole area is classified as unstable, 

the resulting SR would be 100%. Based on the condition 

that the SR and the performance of stable cell prediction 

are weighted equally. Huang & Kao (2006) improved the 

SR equation by introducing the Modified Success Rate (MSR) 

(Eq. (6)) for evaluating the performance of landslide models.

MSR = 0.5 × SR + 0.5

×
successfully predicted stable cells

(6)
total number of actual stable cells

The weighting factor of 0.5 was assigned according to 

results of the stochastic test and real-case application. The 

performance value derived by MSR ranges from 0.0～1.0 (Huang 

& Kao 2006). When MSR < 80%, landslide overprediction 

likely occurs. On the other hand, the MSR-derived performance 

values begin to decrease as stable coverage becomes higher 

than 90%, where landslide underprediction likely occurs. The 

best simulation derived by MSR would be around 80%～

90% (Huang & Kao, 2006).

6. Methodology

The TRIGRS program is applied as the landslide prediction 

tool in this study. Based on all the known parameters which 

were defined by field tests, laboratory tests, or empirical 

estimations, such as the slope angle, the soil depth, soil 

engineering parameters, groundwater level, etc. The influence 

of tree roots on improving soil shear strength was estimated 

by the trial-and-error method. More specifically, various values 

of root cohesion were tested by the TRIGRS model. Each 

value provides a stability map (Fs map), and therefore, it is 

corresponding to a Modified Success Rate (MSR) value. The 

expected tree root value is the one that gives the most MSR 

value or the best stability map in compared to the observation.

It is obvious that when root cohesion is ignored or when 

small values of root cohesion are used, unstable areas (areas 

with FS < 1) as well as overprediction trend (MSR is much 

smaller than 80%) is dominant. However, on the contrary, 

when higher values of root cohesion are applied, unstable 

areas are reduced, underprediction trend (MSR is larger than 

90%) is likely to occur. Thus, there should be a suitable 

value of tree root cohesion that somehow provides a balance 

between the situation of underestimation and overestimation, 

and this value should correspond to the expected value of 

root cohesion.

The trial range of tree root cohesion begins from a value 

that ensures no unstable cells (cells with FS <1) occurring 

in the initial condition. This is to satisfy the fact that the 

whole research site is stable before the rainstorm event. When 

the lower bound of tree root cohesion is defined, various 

values cohesion are tested by TRIGRS to find a relationship 

between MSR and the total soil cohesion. The one with the 

best MSR or the one that provides the most acceptable 

predicted stability map in comparison with the real landslide 

scars is the estimated tree root cohesion of the study area.

7. Study Area and Real Landslide Event

The research site is a small watershed located in Jinbu- 

Myeon, Pyeongchang-gun, Kangwon Prefecture, Republic of 

Korea. The center of the study area is located at 37°37ʹ49ʹʹ 

N, 128°33ʹ29ʹʹ E (Fig. 2). Rainfall-triggered debris flows, and 

shallow soil slides are the most abundant types of landslide 

occurrences in this area (Lee et al., 2012b). From 14 June 

to 29 July 2006, during the rainy season, very intense rainfall 

episodes caused many shallow landslides of the flow type 

in granular soils on the slopes. Because Jinbu was the most 

damaged area, it was a suitable site for evaluation of the 

frequency and the distribution of landslides (Lee et al., 2012c). 

Several studies about landslides in Jinbu-Myeon have been 

conducted to date (Lee et al., 2012b; Lee et al., 2012c; Kim 

et al., 2015a), but none of these took the physical influence 

of vegetation cover into account.

Due to a rainstorm even, some landslides were triggered 

between 13:00 and 14:00 (LT) on 15 July 2006. This exact 

time was determined by interviewing local people. The scars 

of these landslides were interpreted by digitizing the high- 
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Fig. 2. Location of the study area (Kim et al., 2015b)

Fig. 3. Digital elevation model  Fig. 4. Slope map

resolution aerial photograph that was taken right after the 

landslide events (Fig. 7). The information on landslide scars 

extracted from aerial photos is generally based on the mor-

phological, drainage and vegetational conditions of the slopes. 

However, in this study, only the last factor was considered 

as its clear vegetational contrast with surrounding and the 

lack of data related to the first two factors. These landslide 

scars were then adjusted and verified by using field survey 

descriptions.

7.1 Geomorphology

The surface of the study area is illustrated by a 1.0-m 

resolution elevation map which is created by the National 

Geographic Information Institute in the Republic of Korea 

(Fig. 3). This map was then used to interpolate the slope 

map (Fig. 4) and the flow directions map for the input files 

in TRIGRS model. As can be seen in Fig. 4, the area is 

composed of very steep slopes (average slope angle is almost 
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Table 1. Soil properties tested by triaxial test

Soil parameter Unit Value

Saturated soil density kN/cm
3

17.4

Unsaturated soil density kN/cm
3

14.9

Water density kN/cm
3

10

Cohesion c kPa 1.6

Internal friction angle  (°) 36.5

Hydraulic conductivity Ksat m/s 1.389 E-05

Diffusivity D0 m
2
s
-1

100 × Ksat

Steady infiltration rate Iz m/s 0.01 × Ksat    Fig. 5. Soil water characteristic curve in the study area

34 degrees; about 45% of the slope is steeper than the 

internal friction angle of 36.5°.

7.2 Geological Conditions and Soil Engineering 

Parameters

The Imgye Granite, which is an extensive intrusion of 

granitoids that occurred during the Daebo Orogeny, is distributed 

over most of Jinbu-Myeon (about 77%), as shown in Fig. 2. 

The soil material of the study site is mostly granite residuum 

(Lee et al., 2012c), and well-drained soils cover about 84% 

of the whole area. Therefore, only one property zone is 

considered in this study.

For shear strength parameters of the soil cover layer, the 

triaxial test was conducted because it represents the processes 

and characteristics of the superficial soil layer better than 

the direct shear test (Frank et al., 2009; Kim et al., 2015a). 

Soil samples were collected from the field and then tested 

using the triaxial compression test. Shallow landslides are 

triggered by elevated pore pressure that decreases the effective 

normal stress rather than by increased shear stress (Anderson 

& Riemer, 1995). Unlike typical triaxial shear testing that 

is accomplished by increasing the shear stress, the Consolidated 

Drained (CD) test approximates the conditions during rainfall- 

induced failure by maintaining constant shear stress while 

reducing effective stress (Kim et al., 2015a). The results of 

the CD test are shown in Table 1.

At the same time as soil shear strength parameters were 

tested, the hydraulic conductivity, the dry and saturated soil 

densities, and the volumetric water content were also defined. 

Two input parameters for the unsaturated flow, the saturated 

volumetric water content (θs) and the residual volumetric 

water content θr, were determined by using the Soil Water 

Characteristic Curve (SWCC) test. The SWCC (Fig. 5) was 

drawn by fitting the van Genuchten formula, and the saturated 

and residual volumetric water contents determined from it 

were 49.6% and 15.0%, respectively (Table 1).

Other input parameters for TRIGRS including the diffusivity 

(D0) and the steady infiltration rate (IZ) were estimated from 

empirical references because their values have a wide range 

and depend on many factors (Hanks & Bowers, 1963; Iverson, 

2000). Iverson (2000) identified D0 as the maximum cha-

racteristic diffusivity given by the ratio of saturated con-

ductivity (Ksat) to the minimum value of the change in 

volumetric water content per unit change in a pressure head 

(C0). The larger the value of diffusivity, the faster the 

downward propagation of groundwater. As it is difficult to 

test for D0, several studies have defined the range of D0 as 

being from 5～500 times that of the hydraulic conductivity 

(Yuan et al., 2005; Liu & Wu, 2008; Baum et al., 2010; 

Kim et al., 2010a; Liao et al., 2011; Park et al., 2013). In 

this study, based on the hydraulic properties of the soil, D0 

was assumed to be 100 times the value of Ksat. The value 

of Iz can be approximated by defining the average precipitation 

rate needed to maintain the initial conditions in the days 

and months preceding an event (Baum et al., 2010). However, 

for simplification, Iz was assumed to be 100 times less than 

Ksat, as suggested by Park et al. (2013) due to the conditions 

during summer in Korea.

7.3 Groundwater Table and Rainfall Data

There were no groundwater table data before the landslide 

incident. However, based on the natural conditions of the 

hillslopes in Korea, groundwater commonly lies in the very 

deep soil around the mountain tops of South Korea (Kim 

et al., 2013). Therefore, most studies have accepted that the 

groundwater table coincides with the depth of the top soil 
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Fig. 6. Thirty minute rainfall intensity data Fig. 7. Vegetation coverage and landslide scar map

layers at initial condition (Kim et al., 2010a; Kim et al., 2013; 

Park et al., 2013). Thus, in this study, the event occurred 

during the summer, and there was no heavy antecedent 

rainfall before the event, the groundwater table was assumed 

to be at the bottom of the weathered soil layer (Fig. 8).

Rainfall occurs primarily during the summer season, from 

June to September, as part of the East Asian monsoon (Kim 

et al., 2015a). Jinbu, in the Pyeongchan District, is within 

the rainiest area in Korea. Its total precipitation is more 750 

mm than the annual ones of 340 mm during the rainy season. 

Of particular significance, heavy rainfall totaling 429 mm 

fell in the study area over a period of more than 29 h on 

15～16 July 2006. Kim et al. (2015b) measured the total rainfall 

rate at 450 mm day
-1

 and the maximum rainfall intensity of 

the triggering event at about 90 mm h
-1
. This critical condition 

led to many landslides, the collapse of embankments, and 

the flooding of farmland due to water level increases at the 

confluence of rivers (Lee et al., 2012a; Lee et al., 2012b).

It has frequently been observed that hillslope failures are 

often related to short (<1 h) and intense rainfall rather than 

to daily-average precipitation (Kim et al., 2015b). Therefore, 

in this study, a time series of rainfall intensity per 30 min 

was used as the input in the TRIGRS model. The data was 

measured by Jinbu-Myeon station corresponding to the landslide 

event that started at 00:00 on 15 July 2006 and ended at 

16:00 on the same day. Fig. 6 shows the measured 30-min 

rainfall intensity in the study area before, during, and after 

the sliding event occurred.

7.4 Forest Properties

Pyeongchang had 37.1% of coniferous forest, 39.7% of 

deciduous forest, and 23.2% of mixed forest cover. The 

crown coverage value was mostly medium or dense. The 

study area was under Korean pine (Pinus koraiensis) and 

Japanese larch (Larix kaempferi) (Kim et al., 2015b) (Fig. 7), 

which are two common plantation species in Korea (Kim 

et al., 2011). The estimated root reinforcements from the 

model of Wu et al. (1979) were, on average, 4.04 kPa for 

Japanese larch and 12.26 kPa for Korean pine (Kim et al., 

2011). However, these values may vary depending on species, 

root density, soil properties, and assessment methods.

7.5 Soil Depth or Soil Thickness

Soil thickness is of particular importance, as are the 

mechanical and hydrological properties related to hydraulic 

conductivity, transmissivity, and angle of internal friction 

(Kim et al., 2015a). However, mapping the thickness of the 

topsoil layer is complex, costly, and time-consuming, especially 

for a large area with complicated topography. Therefore, 

soil thickness information has rarely been obtained from 

landslide-prone areas, and uniform soil thickness has often 

been assumed (Ho et al., 2012; Park et al., 2013). Several 

researchers have created a soil thickness map using the 

relationship between soil thickness and topographical conditions 

(Salciarini et al., 2006; Segoni et al., 2012). Lee & Ho 

(2009) adopted the wetness index to determine the spatial 

distribution of soil thickness for a slope stability analysis. 

In this study, the dynamic cone penetrometer (25 mm diameter 
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Fig. 8. Map of Soil thickness

Fig. 9. FS map at initial condition when tree root cohesion is 

ignored

Fig. 10. FS map at initial condition when tree root cohesion is 

considered (Cr = 3.0 kPa)

with 60° tip angle), also known as the knocking pole test 

was used to measure the soil thickness data in the study area, 

where landslides have increased recently. More detail about 

the procedure to build the soil thickness map is described 

in the study of Kim et al. (2015b). The map shows the thickness 

of the weathered soil layer is presented in Fig. 8 in meter.

8. Trial-And-Error Method for the 

Determination of Tree Root Cohesion

Fig. 9 shows the FS map at the initial condition when 

root cohesion is not taken into account. As can be seen, a 

large proportion of the study area is unconditionally unstable 

or with the present input data; these areas are unstable under 

all kind of rainfall scenarios. This is not reasonable in reality 

as the slopes remain stable. By applying the trial-and-error 

method, and increasing the value of total cohesion until there 

was no unstable cell in the FS map at initial condition (Fig. 

10), the lower bound of root cohesion was found to be equal 

to 3 kPa.

After the lower bound of tree root cohesion was defined, 

the trial-and-error procedure was continued; however, the 

MSR value of each FS map corresponding to each trial of 

root cohesion also was started to calculate. As explained in 
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Fig. 11. Relationship between MSR at the observed sliding time 

and total cohesion

Fig. 12. FS map at 03h30’, July 2007, 15
th
 

(SR = 5.14%; MSR = 51.34)

Fig. 13. FS map at 10h30’, July 2007, 15
th 

(SR = 15.87%; MSR = 56.21%)

the methodology section, the procedure is stopped when there 

is a reducing trend in the value of MSR. This reducing trend 

indicates that the value of root cohesion begins to become 

larger than expected, creating an underprediction problem. 

Fig. 11 shows the relationship between MSR at the observed 

sliding time and different total cohesion (soil cohesion + root 

cohesion). As can be seen, the relationship has a smooth 

“dome” shape with the highest MRS value equal to 77.6%, 

which corresponds to the total cohesion of 5.4 kPa and the 

root cohesion of 3.8 kPa. This root cohesion value is not 

much different from the values estimated for the same types 

of trees (4.04 kPa for Japanese larch and 12.26 kPa for 

Korean pine) by Kim et al. (2011). Kim et al. (2010b) also 

concluded that roots increased soil shear strengths by as much 

as 3.9～28.2 kPa for larch and 13.5～35.4 kPa for Korean 

pine, implying that roots have substantial effects on slope 

stability. However, additional studies, both theoretical and 

experimental, need to be conducted to support this conclusion, 

especially for different local areas.

9. Results at the Critical Step Using the 

Selected Tree Root Cohesion

9.1 Time Variation of FS

When the root cohesion is assigned, a series of FS maps 

with time is created to see how the FS values change within 

the duration of the rainfall. Figs. 12 to 15 show the distribution 

of FS at four important main moments: 1) at the first peak 

of rainfall intensity (at 03:30 AM); 2) before beginning of 

the second peak (at 11:00 AM); 3) at the maximum rainfall 

intensity (at 12:00); and 4) at the time when most of the 

landslides occurred (13:30 PM). As can be seen, the unstable 

area becomes wider with time; in the same way, the MSR 
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Fig. 14. FS map at 12h00, July 2007, 15
th 

(SR = 48.49%; MSR = 67.9%)

Fig. 15. FS map at 13h30, July 2007, 15
th 

(SR = 76.65%; MSR = 77.62%)

Fig. 16. Value of MRS at different grid cell sizes

values also increase until the time of failure. As the same 

as the observation, most of the landslides do not occur at 

maximum rainfall intensity (Fig. 14), but rather 90 minutes 

later (Fig. 15). At the time of failure, 76.65% (based on Eq. 

5) of the actual unstable cells are predicted, whereas 78.6% 

(based on Eq. (6)) of the actual stable cells are well predicted.

9.2 Consideration of Different Cell Size 

Process-based models have been based on the infinite slope 

form of the Mohr-Coulomb failure law, in which landslide 

dimensions are ignored and these models nonetheless treat 

each grid cell independently (Casadei et al., 2003). Thus, 

their performance depends significantly on the quality of 

the topographic data as well as the relative sizes of the 

landslides compared to the grid cell dimensions (Gritzner et 

al., 2001). However, most of the previous studies did not 

examine in detail the optimal grid cell size for assessing 

landslide susceptibility (Uchida et al., 2011). Therefore, when 

the tree root cohesion is defined, a step to evaluate the 

influence of the raster cell size on the predicted landslide 

map is necessary. This study examined five cases: 1.0 m, 

2.0 m, 3.0 m, 4.0 m, and 5.0 m. A TRIGRS model was built 

for each grid size case, and their MSR values were also 

calculated.

Fig. 16 shows the relationship between MSR and the 

different cell sizes. As can be seen, among five study cases, 

the 1.0 m × 1.0 m size provided the best result; smaller cell 

sizes give better prediction results. This conclusion is coinciding 

with the study of Uchida et al. (2011) and Kim et al. (2015b). 

However, it might change when different sites are considered, 

higher resolution does not necessarily means better model 

performances (Penna et al., 2014; Tarolli & Tarboton, 2006) 

because the relative sizes of the landslides compared to the 

grid cell dimensions is the deciding factor.
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Fig. 17. Slope angle of real landslide scars 

(Min = 22.62; Mean = 40.47; Max = 52.06)

Fig. 18. Slope angle of predicted landslide scars 

(Min = 33.74; Mean = 41.6; Max = 59.576)

Fig. 19. Soil thickness of real landslide scars

(Min = 0.821; Mean = 1.347; Max = 1.903)

Fig. 20. Soil thickness of predicted landslide

(Min = 0.858; Mean = 1.228; Max = 1.833)

9.3 Consideration of Study Area Slope Angles

For slope angle assessment, the slope angle values of the 

real landslide scars (Fig. 17) and the predicted landslides 

(Fig. 18) were extracted by combining the predicted FS map 

at the critical time (Fig. 15) and the slope map (Fig. 4). As 

can be seen, although some scatters occur in the values 

between the slopes of the real and predicted landslides, in 

both cases, the largest occurrence of landslides falls within 

the interval of slope angles ranging from 36.5° to 46.5° or 

in the narrower range from 39° to 44°. In general, landslides 

tend to occur on steeper slopes in the predicted model 

compared with the observed scars.

9.4 Consideration of Soil Thickness of the Study 

Area

When it comes to the soil thickness of the unstable area, 

the histogram of the predicted sliding depth is left-skewed 

(Fig. 19) showing the range of soil depth with the highest 

landslide frequency from 1.02 m to 1.32 m, but the histogram 

of observed sliding depth (Fig. 20) does not show such a 

clear pattern. Observed landslides occur more often in the 

depth range of 1.02 m to 1.32 m, but a large frequency of 

landslides also occurs in the 1.72 m to 1.82 m interval. 

Additionally, the soil depth of the observed landslides is 

slightly larger than that of the predicted landslides (average 

value of 1.347 m compared to 1.228 m).

10. Conclusion

Like other numerical and analytical models of groundwater 

flow and slope stability, TRIGRS is subjected to limitations 

imposed by simplifying assumptions, approximations, and 

other shortcomings in the underlying theories (Baum et al., 

2009). Beside some limitations, those can be relieved by the 

site conditions themselves, such as the soil is assumed to 

be homogeneous and isotropic, the flow is presumed to be 

one-dimensional vertical infiltration. Other things can be done 

to improve the performance of the model are to improve the 

quality of the input data such as the groundwater conditions, 

the DEM, the spatial distribution of soil depth, and the soil 
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engineering parameters. More details about the limitations 

of the TRIGRS model are well concluded in the study of Baum 

et al. (2009). Within this study, the following conclusions 

can be drawn:

Root cohesion plays a significant role in stabilizing natural 

hillslope. Without considering its influence, a large proportion 

of the study area examined here would be unconditionally 

unstable even at the initial condition. Landslide models provide 

more reasonable results in both space and time when vegetation 

cover is considered.

This study used triaxial tests to determine soil shear strength 

and historical landslide scars to perform back-analysis of 

tree root cohesion. The impact of vegetation cover in the 

study area can be compared to an increase in soil cohesion 

of 3.8 kPa. However, more studies, both theoretical and 

experimental, need to be conducted to support this conclusion. 

Nevertheless, this study provides a good beginning on which 

engineers can base on for urban planning and designing.

When using a physical raster-based landslide model, the 

predicted landslides depend strongly on the quality of the 

topographic data and the relative size of the landslides 

compared to grid-cell dimensions. Therefore, additional studies 

should be conducted to determine the influence of cell size 

to predicted results. In this study, smaller cell sizes provided 

better results.

This study revealed a good match between the slope angles 

of real landslide scars and those of the predicted landslides, 

with the largest occurrence of landslides for both cases falling 

within the interval of slope angles from 36.5° to 46.5°. Thus, 

slope is a very good indicator for landslide prediction in the 

study area.

An analysis of the soil depth for the observed and the 

predicted landslides did not show good agreement, even 

though both of these showed that the highest frequency of 

landslide occurrence was within the soil thickness range of 

1.02 m to 1.32 m. The average soil depth of the observed 

landslides was slightly larger than that of the predicted 

landslides (1.347 m compared to 1.228 m).

In short, further studies to quantify the impacts of trees 

on shallow landslides under various conditions of rainfall 

and topography are regarded as important for improving the 

model. Directly considering the influence of root cohesion 

is difficult because it depends on many factors, including 

depth of root, dimension of root, type of root, depth of root 

infiltration, and spatial variability of root cohesion. Thus, 

back-calculation based on historical landslides or old landslide 

scars is a good approach.
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