DOI QR코드

DOI QR Code

Recognition of Falls and Activities of Daily Living using Tri-axial Accelerometer and Bi-axial Gyroscope

  • Park, Geun-chul (Dept. of Interdisciplinary program in Biomedical Engineering, Pusan National University) ;
  • Kim, Soo-Hong (Dept. of Interdisciplinary program in Biomedical Engineering, Pusan National University) ;
  • Kim, Jae-hyung (Dept. of Computer Simulation, Inje University) ;
  • Shin, Beum-joo (Dept. of applied Information Technology & Engineering, Pusan National University) ;
  • Jeon, Gye-rok (Dept. of Biomedical Engineering, School of Medicine, Pusan National University)
  • 투고 : 2016.02.22
  • 심사 : 2016.03.24
  • 발행 : 2016.03.31

초록

This paper proposes a threshold-based fall recognition algorithm to discriminate between falls and activities of daily living (ADL) using a tri-axial accelerometer and a bi-axial gyroscope sensor mounted on the upper sternum. The experiment was executed ten times according to the proposed experimental protocol. The output signals of the tri-axial accelerometer and the bi-axial gyroscope were measured during eight falls and eleven ADL action sequences. The threshold values of the signal vector magnitude (SVM_Acc), angular velocity (${\omega}_{res}$), and angular variation (${\theta}_{res}$) parameter were calculated using MATLAB. From the preliminary study, three thresholds (TH1, TH2, and TH3) were set so that the falls could be distinguished from ADL. When the parameter SVM_Acc is greater than 2.5 g (TH1), ${\omega}_{res}$ is greater than 1.75 rad/s (TH2), and ${\theta}_{res}$ is greater than 0.385 rad (TH3), these action sequences are recognized as falls. If at least one or more of these conditions is not satisfied, the sequence is classified as ADL.

키워드

참고문헌

  1. M. E. Tinetti, "Prevention of falls and fall injuries in elderly persons: a research agenda", Preventive Med., Vol. 23, pp. 756-762, 1994. https://doi.org/10.1006/pmed.1994.1130
  2. S. T. Londei, J. Rousseau, F. Ducharme, A. St-Arnaud, J. Meunier, J. Saint-Arnaud and F. Giroux, "An intelligent video monitoring system for fall detection at home: perceptions of elderly people", J. Telemedicine and Telecare, Vol. 15, No. 8, pp. 383-390, 2009. https://doi.org/10.1258/jtt.2009.090107
  3. C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, "Robust video surveillance for fall detection based on human shape deformation", IEEE Trans. Circuits Syst. Video Technol., Vol. 21, No. 5, pp. 611-622, 2009. https://doi.org/10.1109/TCSVT.2011.2129370
  4. E. Auvinet, F. Multon, A. Saint-Arnaud, J. Rousseau, and J. Meunier, "Fall detection with multiple cameras: An occlusion-resistant method based on 3-D silhouette vertical distribution", IEEE Trans. Inf. Technol. Biomed., Vol. 15, No. 2, pp. 290-300, 2011. https://doi.org/10.1109/TITB.2010.2087385
  5. M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jamsa, "Comparison of low-complexity fall detection algorithms for body attached accelerometers", Gait Posture, Vol. 28, pp. 285-291, 2008. https://doi.org/10.1016/j.gaitpost.2008.01.003
  6. M. N. Nyan, E. H. Francis, M. TAY, M. Manimaran, K. H. W. Seah, "Garment-based detection of falls and activities of daily living using 3-axis MEMS accelerometer", J. Physics, Conference Series, Vol. 34, pp. 1059-1067, 2006.
  7. A. K. Bourke and G. M. Lyons, "A threshold-based falldetection algorithm using a bi-axial gyroscope sensor", Med. Eng. Phys., Vol. 30, pp. 84-90, 2008. https://doi.org/10.1016/j.medengphy.2006.12.001
  8. B. Najafi, K. Aminian, F. Loew, Y. Blanc, P. A. Robert, "Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly", IEEE Trans. Biomed. Eng., Vol. 49, No. 8, pp. 843-851, 2002.
  9. B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew, C. J. Bula, P. Robert, "Ambulatory system for human motion analysis using a kinematic sensor monitoring of daily physical activity in the elderly", IEEE Trans. Biomed. Eng., Vol. 50, No. 6, pp. 711-723, 2003. https://doi.org/10.1109/TBME.2003.812189
  10. A. K. Bourke, J. V. O'Brien, and G. M. Lyons, "Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm", Gait Posture, Vol. 26, pp. 194-199, 2007. https://doi.org/10.1016/j.gaitpost.2006.09.012
  11. M. Kangas, A. Konttila, I. Winblad, and T. Jamsa, "Determination of simple thresholds for accelerometer-based parameters for falls detection", Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 8, pp. 23-26, Lyon, France, 2007.
  12. P. K. Chao, H. L. Chan, F. T. Tang, Y. C. Chen, M. K. Wong, "A comparison of automatic fall detection by the cross-product and magnitude of tri-axial acceleration", Physiol. Meas., Vol. 30, pp. 1027-1037, 2009. https://doi.org/10.1088/0967-3334/30/10/004
  13. D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell and B. G. Celler, "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring", IEEE Trans. Inf. Technol. Biomed., Vol. 10, No. 1, pp. 156-167, 2006. https://doi.org/10.1109/TITB.2005.856864
  14. G.R. Jeon, S.J. Ahn, B.J. Shin, S.C. Kang, J.H. Kim, "Sensor module for detecting postural change and falls", J. Sensor Sci. & Tech., Vol. 23, No. 6, pp. 362-367, 2014. https://doi.org/10.5369/JSST.2014.23.6.362
  15. M. Kangas, I. Vikman, J. Wiklander, P. Lindgren, L. Nyberg, Timojamsa, "Sensitivity and specificity of fall detection in people aged 40 years and over", Gait Posture, Vol. 29, pp. 571-574, 2009. https://doi.org/10.1016/j.gaitpost.2008.12.008