DOI QR코드

DOI QR Code

실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle

  • 김현 (사단법인 캠틱종합기술원) ;
  • 이덕진 (군산대학교 기계자동차조선해양공학부)
  • Kim, Hyeon (CAMTIC Advanced Mechatronics Technology Institute for Commercialization) ;
  • Lee, Deok Jin (School of Mechanical Automotive Naval Architecture and Ocean Engineering, Kunsan Nat'l Univ.)
  • 투고 : 2015.09.01
  • 심사 : 2015.11.27
  • 발행 : 2016.04.01

초록

멀티로터 비행체는 여러 개의 로터로 이루어진 무인 비행로봇으로서, 로터의 개수에 따라서 트라이로터, 쿼드로터, 헥사로터, 옥토로터 등으로 나누어 진다. 멀티로터는 수직이착륙 및 정지비행과 같은 높은 기동성으로 인하여 다른 무인 비행로봇에 비하여 험준한 산학지역 및 건물이 밀집되어 있는 도심과 같은 지역의 정찰 및 감시 등 여러 응용분야에 유용하게 활용될 수 있다. 하지만, 멀티로터는 불확실한 외부 환경 및 외란의 영향에 쉽게 노출될 수 있어 강건한 자세 및 비행제어 기법의 적용을 필요로 한다. 본 논문에서는 강인제어기법 중 하나인 슬라이딩 모드제어기를 설계 및 임베디드 알고리듬을 구현을 통하여 실시간 실내 비행실험을 위한 시스템을 구성하고, 실시간 위치제어 및 자세 안정화에 대한 실내 비행실험을 수행하였다. 특히, 불확실한 외부환경에 대한 강건한 비행특성을 검증하기 위하여 외란을 삽입하여 비행시험을 통해 성능을 검증하였다.

A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

키워드

참고문헌

  1. Schoenwald, D. A., 2000, "AUVs: in Space, Air, Water, and on the Ground," IEEE Control Systems Magazine, Vol. 20, No. 6, pp. 15-18. https://doi.org/10.1109/MCS.2000.887445
  2. Lee, D. J., Kaminer, I., Dobrokhodov, V. and Jones, K., 2010, "Autonomous Feature Following for Visual Surveillance Using a Small Unmanned Aerial Vehicle with Gimbaled Camera System," International Journal of Control, Automation, and Systems, Vol. 8, No. 5, pp. 957-966. https://doi.org/10.1007/s12555-010-0504-1
  3. Lee, D. J. and Andersson, K., 2011, "Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks," International Journal of Advanced Robotic Systems, Vol. 8, No. 2, pp. 1-13. https://doi.org/10.5772/10531
  4. Bouabdalla, S., 2007, "Design and Control of Quadrotors with Application to Autonomous Flying," EPFL, Ph.D. Dissertation.
  5. Kim, H., Jeong, H. S., Chong, K. T. and Lee, D. J., 2014, "Dynamic Modelling and Control Techniques for Multi-rotor Flying Robots," Trans Korean Soc. Mech. Eng. A, Vol. 38, No. 2, pp. 137-148. https://doi.org/10.3795/KSME-A.2014.38.2.137
  6. Bouabdalla, S. and Siegware, R., 2007, "Full Control of a Quadrotor," IEEE/RSJ International Conference on Intelligent Robots and Systems, California.
  7. Bouabdalla, S., Noth A. and Siegware, R., 2004, "PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor," Intelligent Robot and System, Vol. 3, pp. 2451-2456.
  8. Bouabdalla, S. and Siegware, R., 2005, "Backstepping and Sliding-mode Control Techniques Applied to an Indoor Micro Quadrotor," Robotics and Automation, ICRA 2005. Proceedings of the IEEE International Conference on, pp. 2247-2252.
  9. Hoffmann, G., Haung, H., Waslander, S. L. and Tomlin, C. J., 2007, "Quadrotor Helicopter Flight Dynamics and Control : Theory and Experiment," AIAA Guidance, Navigation and Control Conference, South Carolina.
  10. Pounds, P., 2007, "Design, Construction and Control of a Large Quadrotor Micro Air Vehicle," ANU, Ph.D. Dissertation
  11. Cutler, M., Kemal, N., Bernard, U., Jonathan, M. and How, P., 2011, "Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors," AIAA Guidance, Navigation, and Control Conference.
  12. Kushleyev, A., Mellinger, D., Powers, C. and Kumar, V., 2013, "Towards a Swarm of Agile Micro Quadrotors," Autonomous Robots, Vol. 35, No. 4, pp. 287-300. https://doi.org/10.1007/s10514-013-9349-9
  13. Grzonka, S., Grisetti, G. and Burgard, W., 2011, "a Fully Autonomous Indoor Quadrotor," IEEE Transactions on Robotics, Vol. 28, No. 1.
  14. Tomic, T., Schmid, K., Lutz, P., D€omel, A., Kassecker, M., Mair, E., Grixa, I. L, Ruess, F., Suppa, M. and Burschka, D., 2012, "Toward a Fully Autonomous UAV - Research platform for Indoor and Outdoor Urban Search and Rescue," Robotics & Automation Magazine, IEEE, Vol. 19, No. 3, pp. 46-56. https://doi.org/10.1109/MRA.2012.2206473
  15. Beard, R. W. and McLain, T. W., 2012, "Small Unmanned Aircraft: Theory and Practice," Princeton University Press, New Jersey, USA.
  16. Ansu, M. S., Lee, D. J, Hong, D. P. and Chong, K. T., 2013, "Successive Loop Closure Based Controller Design for an Autonomous Quadrotor Vehicle," Mechanics and Materials, Vol. 483, pp. 361-367. https://doi.org/10.4028/www.scientific.net/AMM.483.361
  17. Lee, H. B., Moon S. W., Kim, W. J. and Kim, H. J., 2013, "Cooperative Surveillance and Boundary Tracking with Multiple Quadrotor UAVs," Journal of Institute of Control, Robotics and Systems, Vol. 19, No. 5, pp. 423-428. https://doi.org/10.5302/J.ICROS.2013.13.9006
  18. Cho, D. H., Moon, S. T., Jang, J. T. and Rew, D. Y., 2014, "Collision Avoidance Maneuver Design for the Multiple Indoor UAV by using AR. Drone," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 9, pp.752-761. https://doi.org/10.5139/JKSAS.2014.42.9.752
  19. Kang, T. S., Yoon, K. J., Ha, T. H. and Lee, G. G., 2015, "H-infinity Control System Design for a Quadrotor," Journal of Institute of Control, Robotics and Systems, Vol. 21, No. 1, pp. 14-20. https://doi.org/10.5302/J.ICROS.2015.14.9054
  20. VICON, Available : http://www.vicon.com/
  21. Ascending Technology, Available : http://www.asctec.de/