DOI QR코드

DOI QR Code

Development of a Hydraulic and Hydrologic Analysis Model for the Recovery of Ecological Connectivity at an Isolated Space of a Stream

하천의 차단된 공간에서 생태적 연결성 회복을 위한 수리수문학적 분석모형 개발

  • Received : 2016.01.26
  • Accepted : 2016.03.20
  • Published : 2016.03.31

Abstract

River restoration has recently progressed in consideration of ecological functions along with flood controls and conservation. For river restorations that consider ecological health and diversity, it is important to contemplate the recovery of hydraulic and hydrologic connectivity in isolated spaces by longitudinal structures. In this study, as a first step for the provision of hydraulic and hydrologic data, which is necessary for the ecological connection analysis in isolated spaces, we developed a one-dimensional numerical model for rainfall runoff and channel routing and applied it to the Cheongmi watershed. The developed numerical model can simulate hydraulic and hydrologic analysis at the same time using the rainfall data. Numerical results were compared with observed data and other numerical results. As a result, a very reasonable agreement is observed. The results of this study will be improved so that the long-term hydrologic and hydraulic analysis is possible to predict ecological change.

최근 하천복원 사업은 하천의 이수 및 치수 기능과 함께 생태적 기능을 고려한 방향으로 진행되고 있다. 생태적 건강성과 다양성이 증대된 하천으로의 복원을 위해서는 하천 내 제방과 같은 종적구조물로 의해 차단된 공간에서의 수리수문 연결성 회복이 중요하다. 본 연구에서는 차단된 공간에서의 생태적 연결성 분석에 필요한 수리수문자료의 제공을 위한 첫번째 단계로써 강우에 의한 유역유출 및 하도흐름 해석이 동시에 가능한 1차원 수치모형을 개발하였고, 이를 청미천 유역에 적용하였다. 수치해석 결과는 실측 자료 및 타 모형의 수치해석 결과와 비교하였고, 그 결과 잘 일치함을 알 수 있었다. 본 연구의 결과는 생태적 변화를 예측할 수 있는 자료의 제공을 위해 장기적인 수리수문분석이 가능하도록 보완될 예정이다.

Keywords

References

  1. Bennett, J.P. 1974. Concepts of mathematical modeling of sediment yield. Water Resources Research 10(3): 485-492. https://doi.org/10.1029/WR010i003p00485
  2. Ickes, B.S., Vallazza, J., Kalas, J. and Knights, B. 2005. River Floodplain Connectivity and Lateral Fish Passage: A Literature Review. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, USA.
  3. Kim, J.S. and Kim, K.H. 2015. Sustainable river restoration through enlarging river space. Magazine of Korea Water Resources Association 48(4): 39-44. (in Korean)
  4. Meyer, L.D. and Wischmeier, W.H. 1969. Mathematical simulation of the process of soil erosion by water. Transactions of the American Society of Agricultural Engineers 12(6): 754-758. https://doi.org/10.13031/2013.38945
  5. Miller, S.N., Semmens, D.J., Goodrich, D.C., Hernandez, M., Miller, R.C., Kepner, W.G. and Guertin, D.P. 2007. The automated geospatial watershed assessment tool. Environmental Modelling & Software 22: 365-377. https://doi.org/10.1016/j.envsoft.2005.12.004
  6. Montgomery, D.R. and Bolton, S.M. 2003. Hydrogeomorphic variability and river restoration. In, Wissmar, R.C., Bisson, P.A. and Duke, M. (eds.), Strategies for Restoring River Ecosystems: Sources of Variability and Uncertainty in Natural and Managed Systems, American Fisheries Society, Bethesda, Maryland, USA. pp. 39-80.
  7. Morris, E.M. and Woolhiser, D.A. 1980. Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrographs. Water Resources Research 16(2): 355-360. https://doi.org/10.1029/WR016i002p00355
  8. Nash, J.E. and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models Part I-A Discussion of principles. Journal of Hydrology 10: 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  9. WAMIS (Water Resources management information System). http://www.wamis.go.kr. Assessed 30 December 2015.
  10. Willmott, C.J. 1981. On the validation of models. Physical Geography 2: 184-194.
  11. Woolhiser, D.A. 1975. Simulation of unsteady overland flow. Unsteady Flow in Open Channels 2: 485-508.

Cited by

  1. Development of Hydraulic Analysis and Assessment Models for the Restoration of Ecological Connectivity in Floodplains Isolated by Levees vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.307