DOI QR코드

DOI QR Code

Comparison of Offset Approximation Methods of Conics with Explicit Error Bounds

  • Bae, Sung Chul (Department of Mathematics Education, Korea University) ;
  • Ahn, Young Joon (Department of Mathematics Education, Chosun University)
  • Received : 2016.01.29
  • Accepted : 2016.03.25
  • Published : 2016.03.30

Abstract

In this paper the approximation methods of offset curve of conic with explicit error bound are considered. The quadratic approximation of conic(QAC) method, the method based on quadratic circle approximation(BQC) and the Pythagorean hodograph cubic(PHC) approximation have the explicit error bound for approximation of offset curve of conic. We present the explicit upper bound of the Hausdorff distance between the offset curve of conic and its PHC approximation. Also we show that the PHC approximation of any symmetric conic is closer to the line passing through both endpoints of the conic than the QAC.

Keywords

References

  1. W. Bohm, G. Farin, and J. Kahmann, "A survey of curve and surface methods in CAGD", Comput. Aided Geom. D., Vol. 1, pp 1-60, 1984. https://doi.org/10.1016/0167-8396(84)90003-7
  2. E. T. Lee, "The rational Bezier representation for conics", In G. E. Farin, eds., Geometric Modeling: Algorithms and New Trends. SIAM, pp. 3-19, 1987.
  3. W. H. Frey and D. A. Field, "Designing Bezier conic segments with monotone curvature", Comput. Aided Geom. D., Vol. 17, pp 457-483, 2000. https://doi.org/10.1016/S0167-8396(00)00011-X
  4. Y. J. Ahn and H. O. Kim, "Curvatures of the quadratic rational Bezier curves", Comput. Math. Appl., Vol., 36, pp 71-83, 1998.
  5. G.-J. Wang and G.-Z. Wang, "The rational cubic Bezier representation of conics", Comput. Aided Geom. D., Vol. 9, pp 447-455, 1992. https://doi.org/10.1016/0167-8396(92)90043-O
  6. L. Fang, "A rational quartic Bezier representation for conics", Comput. Aided Geom. D., Vol 19, pp 297-312, 2002. https://doi.org/10.1016/S0167-8396(02)00096-1
  7. J. Sanchez-Reyes, "Geometric recipes for constructing Bezier conics of given centre or focus", Comp. Aided Geom. Desi., Vol. 21, pp 111-116, 2004. https://doi.org/10.1016/j.cagd.2003.09.001
  8. C. Xu, T.-W. Kim and G. Farin, "The eccentricity of conic sections formulated as rational Bezier quadratics", Comput. Aided Geom. D., Vol. 27, 458-460, 2010. https://doi.org/10.1016/j.cagd.2010.04.001
  9. A. Cantona, L. Fernandez-Jambrina and E. R. Maria, "Geometric characteristics of conics in Bezier form", Comput. Aided Design, Vol. 43, 1413-1421, 2011. https://doi.org/10.1016/j.cad.2011.08.025
  10. J. Sanchez-Reyes, "Simple determination via complex arithmetic of geometric characteristics of Bezier conics", Comput. Aided Geom. D., Vol. 28, pp 345-348, 2011. https://doi.org/10.1016/j.cagd.2011.06.007
  11. M. Floater, "High-order approximation of conic sections by quadratic splines", Comput. Aided Geom. D., Vol. 12, pp 617-637, 1995. https://doi.org/10.1016/0167-8396(94)00037-S
  12. M. S. Floater, "An O($h^{2n}$) Hermite approximation for conic sections", Comput. Aided Geom. D., Vol. 14, pp 135-151, 1997. https://doi.org/10.1016/S0167-8396(96)00025-8
  13. L. Fang, "$G^3$ approximation of conic sections by quintic polynomial curves", Comput. Aided Geom. D., Vol. 16, pp 755-766, 1999. https://doi.org/10.1016/S0167-8396(99)00017-5
  14. Y. J. Ahn, "Approximation of conic sections by curvature continuous quartic Bezier curves", Comput. Math. Appl., Vol. 60, pp 1986-1993, 2010. https://doi.org/10.1016/j.camwa.2010.07.032
  15. R. T. Farouki, "Conic approximation of conic offsets", J. Symb. Comput., Vol. 23, pp 301-313. 1997. https://doi.org/10.1006/jsco.1996.0090
  16. G. Salmon, "A treatise on conic sections", New York: Chelsea, 1954.
  17. W. Lu, "Offset-rational parametric plane curves", Comput. Aided Geom. D., Vol. 12, pp 601-616, 1995. https://doi.org/10.1016/0167-8396(94)00036-R
  18. G. Farin, "Curvature continuity and offsets for piecewise conics", ACM T. Graphic., Vol. 8, pp. 89-99, 1989. https://doi.org/10.1145/62054.62056
  19. R. Lee and Y. J. Ahn, "Construction of logarithmic spiral-like curve using $G^2$ quadratics spline with self similarity", J. Chosun Natural Sci., Vol. 7, pp 124-129, 2014. https://doi.org/10.13160/ricns.2014.7.2.124
  20. Y. J. Ahn, C. M. Hoffmann, and Y. S. Kim, "Curvature-continuous offset approximation based on circle approximation using quadratic Bezier biarcs", Comput. Aided Design, Vol. 43, pp. 1011-1017, 2011. https://doi.org/10.1016/j.cad.2011.04.005
  21. I.-K. Lee, M.-S. Kim, and G. Elber, "Planar curve offset based on circle approximation", Comput. Aided Design, Vol. 28, pp 617-630, 1996. https://doi.org/10.1016/0010-4485(95)00078-X
  22. S. W. Kim, S. C. Bae, and Y. J. Ahn, "An algorithm for $G^2$ offset approximation based on circle approximation by $G^2$ quadratic spline", Comput. Aided Design, Vol. 73, pp 36-40, 2016. https://doi.org/10.1016/j.cad.2015.11.003
  23. R. T. Farouki and T. Sakkalis, "Pythagorean hodographs", IBM J. Res. Dev., Vol. 34, pp 736-752, 1990. https://doi.org/10.1147/rd.345.0736
  24. R. T. Farouki, "Pythagorean-hodograph Curves", Berlin: Springer, pp. 381-391, 2008.
  25. D. S. Meek and D. J. Walton, "Geometric Hermite interpolation with Tschirnhausen cubics", J. Comput. Appl. Math., Vol. 81, pp. 299-309, 1997. https://doi.org/10.1016/S0377-0427(97)00066-6