참고문헌
- Chavez, P. S. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multi-spectral data, Remote Sensing of Environment 24: 459-479. https://doi.org/10.1016/0034-4257(88)90019-3
- Cheon, S. O., J. A. Lee, J. J. Lee, Y. B. Yu, G. C. Bang, and Y. J. Lee, 2006. Relationship among inflow volume, water quality and algal growth in the Daecheong lake, Journal of Korean Society on Water Quality 22(2): 342-348 (in Korean).
- Choe, E., J. W. Lee, and J. K. Lee, 2011. Estimation of chlorophyll-a concentrations in the Nakdong River using high-resolution satellite image, Korean Journal of Remote Sensing 27(5):613-623. https://doi.org/10.7780/kjrs.2011.27.5.613
- Choi, E. Y., J. Y. Lee, and J. G. Lee, 2011. Estimation of chlorophyll-a concentrations in the Nakdong river using high-resolution satellite image, Korean journal of remote sensing 27(5): 613-623 (in Korean). https://doi.org/10.7780/kjrs.2011.27.5.613
- Choi, S. P., and J. S. Park, 2006. Evaluation of the optimum band when estimate the density of chlorophyll-a in Landsat ETM+ image, Journal of the Korean Society for GeoSpatial Information System 14(2): 63-68 (in Korean).
- Dekker, A. 1993. Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing, University of Amsterdam.
- Ji, S. B. 2013. Monitoring of reservoir water quality using multi-temporal satellite imagery, The master's thesis, Cheongju University (in Korean).
- Joung, S. H., C. Y. Ahn, A. R. Choi, K. Y. Jang, and H. M. Oh, 2005. Relation between rainfall and phytoplankton community in Daechung reservoir, Korean Journal of Environmental Biology 23(1): 57-63 (in Korean).
- Kim, M. K., J. C. Park, and K. H. Kim, 2007. Development of early forecasting system using GIS and prediction model related to the cyanobacterial blooming in the Daecheong reservoir of Korea, Journal of the Korean association of geographic information studies 10(2): 90-101 (in Korean).
- Kutser, T., L. Metasamaa, N. Strombeck, and E. Vahtmae. 2006. Monitoring cyanobacteria blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67: 303-312. https://doi.org/10.1016/j.ecss.2005.11.024
- Lee, J.A., J. J. Lee, M. N. Lee, and S. U. Cheon, 2009. Result to implementing the algae alert system on the Daecheong reservoir in 2009, Geum River Environment Research Center, National Institute of Environmental Research.
- Lee, K. H., and S. H. Lee, 2012. Monitoring of floating green algae using ocean color satellite remote sensing, Journal of the Korean Association of Geographic Information Studies 15(3): 137-147 (in Korean). https://doi.org/10.11108/kagis.2012.15.3.137
- National Institute of Environmental Research (NIER), 2006. Result to implementing the algae alert system on the Daecheong reservoir in 2006, Geum River Environment Research Center (in Korean).
- National Institute of Environmental Research (NIER), 2008a. Algal bloom forecast operating manual, Seoul (in Korean).
- National Institute of Environmental Research (NIER), 2008b. Standard test method for water contamination process, Seoul (in Korean).
- Park, J. G., 2005. Developmental characteristic of cyanobacterial bloom in lake Daecheong, Korean Journal of Environmental Biology 23(3): 304-314 (in Korean).
- Park J. K., and J. H. Park, 2015. Crops classification using imagery of unmanned aerial vehicle (UAV), Journal of the Korean society of agricultural engineers 57(6): 91-97 (in Korean). https://doi.org/10.5389/KSAE.2015.57.6.091
- Park J. K., and J. H. Park, 2016. Classification of radish and Chinese cabbage in autumn using hyperspectral image, Journal of the Korean society of agricultural engineers 58(1): 91-97 (in Korean). https://doi.org/10.5389/KSAE.2016.58.1.091
- Randolph K., L. Wilson, L. Tedesco, L. Lin, D.L. Pascual and E. Soyeux, 2008. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically pigments, chlorophyll-a and phycocyanin, Remote Sensing of Environment 112: 4009-4019. https://doi.org/10.1016/j.rse.2008.06.002
- Vincent, R. K., Q. Xiaoming, R. Michael, L. McKay, M. Jeffrey, C. Kevin, S. Jeffrey and B. Thomas. 2004. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie, Remote Sensing of Environment 89: 381-392. https://doi.org/10.1016/j.rse.2003.10.014
- Wheeler, S. M., A. M. Leslie, S. N. Levine, G. P. Livingston, W. and F. Vincent. 2012. Mapping cyanobacterial blooms in lake Champlain's Mississippi bay using QuickBird and MERIS satellite data, Journal of Great Lakes Research 38: 68-75.