DOI QR코드

DOI QR Code

Magnesium diboride(MgB2) wires for applications

  • Patel, Dipak (Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong) ;
  • Kim, Jung Ho (Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong)
  • Received : 2016.03.07
  • Accepted : 2016.03.18
  • Published : 2016.03.31

Abstract

Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped $MgB_2/Nb/Monel$ wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the $MgB_2$ structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be $25,000-25,300Acm^{-2}$ for the wire sintered at $600^{\circ}C$ for 4 hours. The irreversibility field, $B_{irr}$, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds $10^5Acm^{-2}$ at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires.

Keywords

References

  1. J. H. Kim, S. Oh, Y. -U. Heo, S. Hata, H. Kumakura, A. Matsumoto, M. Mitsuhara, S. Choi, Y. Shimada, M. Maeda, J. L. MacManus-Driscoll, and S. X. Dou, "Microscopic role of carbon on $MgB_2$ wire for critical current density comparable to NbTi," NPG Asia Materials, vol. 4. pp. e3, 2012. https://doi.org/10.1038/am.2012.3
  2. Z. Gao, Y. Ma, X. Zhang, D. Wang, H. Yang, H. Wen and K. Watanabe, "Influence of sintering temperature on the superconducting properties of Zn-stearate-doped $MgB_2$ tapes," Supercond. Sci. Technol. vol. 21, pp. 015016, 2008. https://doi.org/10.1088/0953-2048/21/01/015016
  3. X. Zhang, Y. Ma, D. Wang, Z. Gao, L. Wang, Y. Qi, S. Awaji, K. Watanabe, and E. Mossang, "Phthalocyanine doping to improve critical current densities in $MgB_2$ tapes," Supercond. Sci. Technol. vol. 22, pp. 045019, 2009. https://doi.org/10.1088/0953-2048/22/4/045019
  4. Y. Ma, Z. Gao, X. Zhang, D. Wang, Z. Yu, K. Watanabe, H. Wen, and E. Mossang, "Enhanced high-field performance in Fe-sheathed $MgB_2$ tapes using inexpensive stearic acid additives," J. Mater. Res. vol. 22, pp. 2987-2991, 2007. https://doi.org/10.1557/JMR.2007.0384
  5. Z. Gao, Y. Ma, X. Zhang, D. Wang, K. Watanabe, H. Yang and H. Wen, "Influence of oxygen contents of carbohydrate dopants on connectivity and critical current density in $MgB_2$ tapes," Appl. Phys. Lett., vol. 91, pp. 162504, 2007. https://doi.org/10.1063/1.2790381
  6. Z. Gao, Y. Ma, X. Zhang, D. Wang, Z. Yu, H. Yang, H. Wen, and E. Mossang, "Enhancement of the critical current density and the irreversibility field in maleic anhydride doped $MgB_2$ based tapes," J. Appl. Phys., vol. 102, pp. 013914, 2007. https://doi.org/10.1063/1.2748711
  7. B. -H. Jun, Y. J. Kim, K. S. Tan and C. -J. Kim, "Effective carbon incorporation in $MgB_2$ by combining mechanical milling and the glycerin treatment of boron powder," Supercond. Sci. Technol., vol. 21, pp. 105006, 2008. https://doi.org/10.1088/0953-2048/21/10/105006
  8. Y. J. Kim, B. -H. Jun, K. S. Tan, B. G. Kim, J. M. Sohn, and C. -J. Kim, "Effect of glycerin addition on the superconducting properties of $MgB_2$," Physica C, vol. 468, pp. 1372-1374, 2008. https://doi.org/10.1016/j.physc.2008.05.059
  9. B. -H. Kim, and C. -J. Kim, "The effect of heat-treatment temperature on the superconducting properties of malic acid-doped $MgB_2$/Fe wire," Supercond. Sci. Technol., vol. 20, pp. 980, 2007. https://doi.org/10.1088/0953-2048/20/10/015
  10. A. Vajpayee, V.P.S. Awanaa, S. Balamurugan, E. T. Muromachi, H. Kishan, and G.L. Bhalla, "Effect of PVA doping on flux pinning in bulk $MgB_2$," Physica C, vol. 466, pp. 46-50, 2007. https://doi.org/10.1016/j.physc.2007.05.046
  11. A. Vajpayee, V. P. S. Awana, G. L. Bhalla, P. A. Bhobe, A. K. Nigam and H. Kishan, "Superconducting properties of adipic-acid-doped bulk $MgB_2$ superconductor," Supercond. Sci. Technol., vol. 22, pp. 015016, 2009. https://doi.org/10.1088/0953-2048/22/1/015016
  12. J. H. Kim, S. X. Dou, S. Oh, M. Jercinovic, E. Babic, T. Nakane and H. Kumakura, "Correlation between doping induced disorder and superconducting properties in carbohydrate doped $MgB_2$," J. Appl. Phys., vol. 104, pp. 063911, 2008. https://doi.org/10.1063/1.2980275
  13. E. W. Collings, M. D. Sumption, M. Bhatia, M. A. Susner and S. D. Bohnenstiehl, "Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands," Supercond. Sci. Technol., vol. 21, pp. 103001, 2008. https://doi.org/10.1088/0953-2048/21/10/103001
  14. K. Vinod, R. G. Abhilash Kumar and U. Syamaprasad, "Prospects for $MgB_2$ superconductors for magnet application," Supercond. Sci. Technol., vol. 20, pp. R1, 2007. https://doi.org/10.1088/0953-2048/20/1/R01
  15. S. X. Dou, O. Shcherbakova, W. K. Yeoh, J. H. Kim, S. Soltanian, X. L. Wang, C. Senatore, R. Flukiger, M. Dhalle, O. Husnjak, and E. Babic, "Mechanism of Enhancement in Electromagnetic Properties of $MgB_2$ by Nano SiC Doping," Phys. Rev. Lett., Vol. 98, pp. 097002, 2007. https://doi.org/10.1103/PhysRevLett.98.097002
  16. H. Kumakura, H. Kitaguchi, A. Matsumoto and H. Hatakeyama, Appl. Phys. Letts. vol. 84, pp. 3669, 2004. https://doi.org/10.1063/1.1738947
  17. M. D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsic, S. Soltanian, S. X. Dou and E. W. Collings, "Large upper critical field and irreversibility field in $MgB_2$ wires with SiC additions," Appl. Phys. Lett. vol. 86, pp. 092507, 2005. https://doi.org/10.1063/1.1872210
  18. W. HaBler, M. Herrmann, C. Rodig, M. Schubert, K. Nenkov and B. Holzapfel, "Further increase of the critical current density of $MgB_2$ tapes with nanocarbon-doped mechanically alloyed precursor," Supercond. Sci. Technol., vol. 21, pp. 062001, 2008. https://doi.org/10.1088/0953-2048/21/6/062001
  19. P. KovAc, I. Husek, E. Dobrocka, T. Melisek, W. Haessler and M. Herrmann. "$MgB_2$ tapes made of mechanically alloyed precursor powder in different metallic sheaths," Supercond. Sci. Technol., vol. 21, pp. 015004, 2008. https://doi.org/10.1088/0953-2048/21/01/015004
  20. A. Asthana, A. Matsumoto, H. Kitaguchi, Y. Matsui, T. Hara, K. Watanabe, H. Yamada, N. Uchiyama and H. Kumakura, "Structural-microstructural characteristics and its correlations with the superconducting properties of in situ PIT-processed $MgB_2$ tapes with ethyltoluene and SiC powder added," Supercond. Sci. Technol., vol. 21, pp. 115013, 2008. https://doi.org/10.1088/0953-2048/21/11/115013
  21. M. Eisterer, M. Zehetmayer, and H. W. Weber, "Current Percolation and Anisotropy in Polycrystalline $MgB_2$," Phys. Rev. Lett., vol. 90, pp. 247002, 2003. https://doi.org/10.1103/PhysRevLett.90.247002
  22. M. A. Susner, M. D. Sumption, M. Bhatia, X. Peng, M. J. Tomsic, M. A. Rindfleisch, and E.W. Collings, "Influence of Mg/B ratio and SiC doping on microstructure and high field transport Jc in $MgB_2$ strands," Physica C, vol. 456, pp. 180, 2007. https://doi.org/10.1016/j.physc.2007.02.005
  23. M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, D. Doll, J. Phillips, M. D. Sumption, M. Bhatia, S. Bohnenstiehl, and E.W. Collings, "Development of magnesium diboride ($MgB_2$) wires and magnets using in situ strand fabrication method," Physica C, vol. 456, pp. 203, 2007. https://doi.org/10.1016/j.physc.2007.01.009
  24. R. Flukiger, H. S. A. Hossain, C. Senatore, M. Rindfleisch, M. Tomsic, J. H. Kim and S. X. Dou, submitted to Supercond. Sci. Technol.
  25. A. Matsumoto, Y. Kobayashi, K. Takahashi, H. Kumakura and H. Kitaguchi, "$MgB_2$ Thin Films Fabricated by a Precursor and Post-annealing Method Have a High Jc in High Magnetic Fields," Appl. Phys. Express, vol. 1, pp. 021702, 2008. https://doi.org/10.1143/APEX.1.021702

Cited by

  1. Superconducting Properties of Reacted Mono- and Multifilament MgB2 Wires With Respect to Bending Diameters Using a Custom-Made Bending Test Probe vol.28, pp.3, 2018, https://doi.org/10.1109/TASC.2018.2798581