DOI QR코드

DOI QR Code

Change of Contrast Sensitivity Induced by Tinted Spectacle Lens

칼라필터 렌즈에 따른 대비감도의 변화

  • 서재명 (광양보건대학교 안경광학과)
  • Received : 2016.02.02
  • Accepted : 2016.03.08
  • Published : 2016.03.31

Abstract

Purpose: The purpose of this study was to investigate the change of contrast sensitivity by prescribing tinted lenses and to provide the clinical manual. Methods: Contrast sensitivity was measured for twenty adults with normal vision while they wore yellow, orange and green tinted lenses. To measure contrast sensitivity, the 5 spatial frequencies (2, 4, 6, 8 and 10 cpd) were used for 33 ms and 233 ms, respectively. Results: The contrast sensitivity was overall higher with 233 ms than 33 ms (p<0.05). The peaks of contrast sensitivity with 33 ms and 233 ms were 1.75 log unit with the yellow lens and 1. 85 log unit without the color respectively. However, there was no significance between the yellow and orange tinted lens (p>0.64) Conclusions: Yellowish tinted lens that reduces chromatic aberration and the scattering is prescribed for the various purposes to improve visual functions. Before prescribing tinted lens, identifying characteristic of user and tinted lens for cut off wavelengths is recommended.

목적: 칼라 필터렌즈를 사용하여 대비감도의 변화를 알아보고 임상에 필요한 매뉴얼을 제시하고자 하였다. 방법: 정상 시각을 가진 성인 남녀 20명을 대상으로 황색, 오렌지색, 녹색 필터렌즈를 사용하여 대비감도를 측정했다. 다섯 개의 공간주파수 2, 4, 6, 8, 10 cpd를 사용하였으며 표적의 노출시간은 33 ms, 233 ms로 설정했다. 결과: 대비감도는 전체적으로 표적의 노출시간이 짧은 33 nm보다 233 ms에서 높게 나타났다(p<0.05). 순간적인 노출(33 ms)에서 대비감도가 가장 높게 나타난 필터렌즈는 2 cpd에서의 황색(1.75 log unit)이었으나 233 ms에서는 8 cpd에서 필터를 삽입하지 않았을 때(1.85 log unit)가 가장 예민한 것으로 나타났지만 황색, 오렌지색 간 차이는 서로 근소하여 통계적 의미는 없었다(p>0.64). 결론: 색수차와 산란현상을 감소시켜 시기능을 개선시키는 황색 계열의 필터렌즈는 시기능 개선을 위한 다양한 목적으로 처방이 되고 있다. 필터렌즈를 처방하기에 앞서 cut off 파장을 고려한 필터렌즈의 특성을 파악하고 사용자의 특성과 필터렌즈의 사용 목적을 분명하게 확인할 것을 제안하는 바이다.

Keywords

References

  1. Derrington AM, Krauskopf J, Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol. 1984;357:241-265. https://doi.org/10.1113/jphysiol.1984.sp015499
  2. De Valois RL, Cottaris NP, Elfar SD, Mahon LE, Wilson JA. Some transformations of color information from lateral geniculate nucleus to striate cortex. Proc Nati Acad Sci U S A. 2000;97(9):4997-5002. https://doi.org/10.1073/pnas.97.9.4997
  3. Benardete EA, Kaplan E. The dynamics of primate M retinal ganglion cells. Vis Neurosci. 1999;16(2):355-368.
  4. Steward JM, Cole BL. What do color vision defectives say about everyday tasks?. Optom Vis Sci. 1989;66(5): 288-295. https://doi.org/10.1097/00006324-198905000-00006
  5. De Valois KK, Switkes E. Simultaneous masking interactions between chromatic and luminance gratings. J Opt Soc Am. 1983;73(1):11-18. https://doi.org/10.1364/JOSA.73.000011
  6. Ostergaard AL, Davidoff JB. Some effects of color on naming and recognition of objects. J Exp Psychol Learn Mem Cogn. 1985;11(3):579-587. https://doi.org/10.1037/0278-7393.11.3.579
  7. Biederman I, Ju G. Surface versus edge-based determinants of visual recognition. Cogn Psychol. 1988;20(1):38-64. https://doi.org/10.1016/0010-0285(88)90024-2
  8. Kaiser PK. Colour vision in the legally blind. Can J Ophthalmol. 1972;7(3):302-308.
  9. Knowlton M, Woo I. Assessment of functional color perception. J Vis Rehab. 1989;3(2):5-22.
  10. Vuilleumier P, Armony JL, Driver J, Dolan RJ. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat Neurosci. 2003;6(6):624-631. https://doi.org/10.1038/nn1057
  11. Tyler CW, McBride B. The morphonome image psychophysics software and a calibrator for Macintosh systems. Spat Vis. 1997;10(4):479-484. https://doi.org/10.1163/156856897X00410
  12. Campbell FW, Robson JG. Application of fourier analysis to the visibility of gratings. J Physiol. 1968;197(3):551-566. https://doi.org/10.1113/jphysiol.1968.sp008574
  13. Shaik M, Majola PD, Nkgare LM, Nene NB, Singh C, Hansraj R et al. The effect of tinted spectacle lenses on contrast sensitivity and colour vision. S Afr Optom. 2013;72(2):61-70.
  14. Wolffsohn JS, Chochrane AL, Khoo H, Yoshimitsu Y, Wu S. Contrast is enhanced by yellow lenses because of selective reduction of short-wavelength light. Optom Vis Sci. 2000;77(2):73-81. https://doi.org/10.1097/00006324-200002000-00011
  15. Hammond BR Jr, Curran-Celentano J, Judd S, Fuld K, Krinsky NI, Wooten BR et al. Sex differences in macular pigment optical density: relation to plasma carotenoid concentrations and dietary patterns. Vision Res. 1996; 36(13):2001-2012. https://doi.org/10.1016/0042-6989(95)00290-1
  16. McGuinness D, Lewis I. Sex differences in visual persistence: experiments in the Ganzfield and afterimages. Perception. 1976;5(3):295-301. https://doi.org/10.1068/p050295

Cited by

  1. Correlation of Contrast Sensitivity with Transient Visual Recognition vol.23, pp.1, 2018, https://doi.org/10.14479/jkoos.2018.23.1.25
  2. Contrast Sensitivity of Dominant and Non-Dominant Eyes in Adults vol.23, pp.4, 2018, https://doi.org/10.14479/jkoos.2018.23.4.433
  3. 청색광이 광중합기용 팁과 보안경에 따라 투과되는 투과율 차이 비교의 융합적 연구 vol.10, pp.12, 2016, https://doi.org/10.15207/jkcs.2019.10.12.177