DOI QR코드

DOI QR Code

대중교통중심개발(TOD) 개선효과 진단을 위한 변동부등식기반 보행네트워크 평가모형

A Variational Inequality-based Walkability Assessment Model for Measuring Improvement Effect of Transit Oriented Development (TOD)

  • 투고 : 2015.12.07
  • 심사 : 2016.03.16
  • 발행 : 2016.04.01

초록

대중교통중심개발(TOD)을 위한 핵심전략은 철도역을 중심으로 보행권내에서 고밀도의 복합토지이용을 유도하는 방안을 마련하는 것이다. 해외에서는 이미 역세권을 중심으로 보행시설의 통합정비를 위한 제도를 마련하고, TOD를 효과적으로 추진해왔다. 그러나 국내는 종합적인 보행정비의 중요성에도 불구하고, 역세권 중심의 통합보행인프라 구축에 대한 방향설정이 부족하다. 따라서 우선 역세권 주변의 보행시설의 통합정비에 대한 평가기준을 마련하여 TOD 개선에 대한 판단근거로 활용하는 것이 시급하다. 본 연구는 TOD의 효과 평가를 위해 역사 건물내부와 주변지역을 통합하여 보행의 원활한 정도를 평가하는 네트워크 모형을 제안한다. 모형은 철도 역사와 주변지역을 일체화된 보행 네트워크 상의 흐름으로 간주한다. 보행자가 선택한 경로는 최소시간 경로라고 정의하여 Wardrop의 이용자 균형(1952) 개념을 확대 적용하였다. 보행통로의 혼잡상황, 엘리베이터의 용량한계, 횡단보도의 대기와 같이 보행시설에서 나타나는 다양한 행태를 고려하기 위해서 변동부등식기반의 보행자 균형배정모형을 제안한다.

The core strategy of transit oriented development (TOD) is to promote high density mixed land use around railway stations. Case studies in advanced countries show that provision of policies for comprehensive maintenance of pedestrian facilities around railway station spheres is being pursued with efficacy. In spite of the importance placed on integrated pedestrian maintenance, domestic construction of integrated pedestrian infrastructure around railway station spheres lacks direction. Thus, there is a clear need for an evaluation standard that can provide the foundation for judgments on TOD improvement. This research proposes a network model that consolidates the interior of the station as well as its surrounding areas to determine the ease of pedestrian flow for effective TOD evaluation. The model considers the railway station and surrounding areas as an assembled network of pedestrian flow. The path chosen by the pedestrian is defined as the optimal degree of inconvenience, and expands on Wardrop's User Equilibrium (1952). To assess the various circumstances that arise on pedestrian facilities including congestion of the pedestrian pathway, constrained elevator capacity, and wait at the crosswalk, a variational inequality based pedestrian equilibrium distribution model is introduced.

키워드

참고문헌

  1. Beckmann, M. J., McGuire, C. B. and Winsten, C. B. (1956). Studies in the Economics of Transportation. Yale University Press, New Haven, Conn.
  2. Dafermos, S. (1980). "Traffic equilibrium and variational inequalities." Transportation Science 14, pp. 42-45. https://doi.org/10.1287/trsc.14.1.42
  3. Dafermos, S. (1982). "Relaxation algorithms for the general asymmetric traffic equilibrium problem." Transportation Science 16, pp. 231-240. https://doi.org/10.1287/trsc.16.2.231
  4. Dijkstra, E. W. (1959). A Note of Two Problems in Connected with Graphs. Numer. Math. I. 99. pp. 269-271.
  5. Fisk, C. S. and Nguyen, S. (1982). "Solution algorithms for network equilibrium models with asymmetric user costs." Transportation Science 16, pp. 361-381. https://doi.org/10.1287/trsc.16.3.361
  6. Florian, M. and Spiess, H. (1982). "The convergence of diagonalization algorithms for asymmetric network equilibrium problems." Transportation Research 16B, pp. 477-483.
  7. Kirby, R. F. and Potts, R. B. (1969). "The minimum route problem for networks with turn penalties and prohibitions." Transportation Research 18B, pp. 123-133.
  8. Koo, J. H. (2011). "A strategy for urban spatial restructure of TOD as a green urban regeneration strategy." Architecture Journal, Vol. 21, No. 10.
  9. LeBlanc, L. J., Morlok, E. K. and Pierskalla, W. (1975). "An efficient approach to solving the road network equilibrium traffic assignment problem." Transportation Research, Vol. 9, No. 5, pp. 309-318. https://doi.org/10.1016/0041-1647(75)90030-1
  10. Lee, J. H. (2003). "Application of agent-based modeling on transport systems analysis." Korean Society of Transportation, Vol. 21. No. 1.
  11. Lee, J. H. (2010). Development of Multi-Class Pedestrian Assignment Algorithm, Master Thesis, Graduate School of Environmental Studies, Seoul National University.
  12. Lee, M. Y. (2004). Transportation Network Models and Algorithms Considering Directional Delay and Prohibition for Intersection Movement, Ph.D. Thesis, University of Wisconsin-Madion.
  13. Lee, M. Y. (2014). Walkability Evaluation Model for Local Walking Areas, KRIHS.
  14. Lee, M. Y., Kim, J. H. and Kim, E. J. (2015). A Pedestrian Network Assignment Model Considering Space Syntax, Korea Society of ITS Accepted for Publication (2015.12).
  15. Lim, H. J. (2005). "A Study on Transit-Oriented Development Method to Activate Transit Use for High Urban-Density Multi-Nucleated Seoul, Korean Society of Transportation Vol. 23, No. 5.
  16. Meneguzzer, C. (1995). "An equilibrium route choice model with explicit treatment of the effect of intersections." Transportation Research 29B, pp. 329-356.
  17. Nagurney, A. (1993). Network Economics: A Variational Inequality Approach. Kluwer Academic Publishers, Boston, Mass.
  18. Park, J. H., Oh, S. H. and Rhee, J. H. (2012). "A study on the analysis of walking behavior in transfer stations after the improvement of walking environment." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3, pp. 189-196.
  19. Sheffic, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice-Hall, Englewood Cliffs, NJ.
  20. Shin, S. I. and Lee, K. H. (2013). Walkability Improvement Strategies for Large Scaled Transportation Complex, Seoul Institute.
  21. Smith, M. J. (1979a). "The existence, uniqueness and stability of traffic equilibrium." Transportation Research 13B, pp. 295-304.
  22. Son, Y. T., Park, W. S., Kim, S. G., Kim, T. W. and Kim, Y. H. (2004). "Developing CA (Cellular Automata)-Based simulation models for pedestrian traffic flows." Journal of the Korean Society of Civil Engineers, Vol. 24, No. 4D, pp. 563-568.
  23. Sung, H. G., Park, J. H. and Kim, D. J. (2007). Impact Analyses of Transit-Oriented Development and Revising Current Transportation and Urban Planning Laws for Its Application in Korea, Korea Transport Institute.
  24. Wardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. Proc. Inst. Civ. Eng., Part II, 1, pp. 325-378.