References
- Banerjee, O., Ghaoui, L. E. and d'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9, 485-516.
- Barabasi, A. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509-512. https://doi.org/10.1126/science.286.5439.509
- Boyd, S. and Vandenberghe, L. (2004). Convex optimization, Cambridge University Press, New York.
-
Cai, T., Liu, W. D. and Luo, X. (2011). A constrained
${\ell}_1$ minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106, 594-607. https://doi.org/10.1198/jasa.2011.tm10155 - Candes, E. J. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35, 2313-2351. https://doi.org/10.1214/009053606000001523
- Candes, E. J. and Plan, Y. (2011). A probabilistic and RIPless theory of compressed sensing. Information Theory, IEEE Transactions, 57, 7235-7254. https://doi.org/10.1109/TIT.2011.2161794
- Dong, H., Luo, L., Hong, S., Siu, H., Xiao, Y., Jin, L., Chen, R. and Xiong, M. (2010). Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Systems Biology, 4, 1-20. https://doi.org/10.1186/1752-0509-4-1
- Drton, M. and Perlman, M. D. (2004). Model selection for Gaussian concentration graphs. Biometrika, 91, 591-602. https://doi.org/10.1093/biomet/91.3.591
- Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441. https://doi.org/10.1093/biostatistics/kxm045
- Fu, W. (1998). Penalized regressions: The bridge vs the lasso. Journal of Computational and Graphical Statistics, 7, 397-416.
- Khare, K., Oh, S.-Y. and Rajaratnam, B. (2015). A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees. Journal of the Royal Statistical Society B, 77, 803-825. https://doi.org/10.1111/rssb.12088
- Kwon, S., Han, S. and Lee, S. (2013). A small review and further studies on the LASSO. Journal of the Korean Data & Information Science Society, 24, 1077-1088. https://doi.org/10.7465/jkdi.2013.24.5.1077
- Lauritzen, S. (1996). Graphical Models. Oxford Unversity Press Inc., New York.
- Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graph and variable selection with the lasso. Annals of Statistics, 34, 1436-1462. https://doi.org/10.1214/009053606000000281
- Nesterov, Y. (2012). Efficiency of coordinate descent methods on huge-scale optimizatioin problems. SIAM Journal on Optimization, 22, 341-362. https://doi.org/10.1137/100802001
- Pang, H., Liu, H. and Vanderbei, R. (2014). The FASTCLIME package for linear programming and largescale precision matrix estimation in R. Journal of Machine Learning Research, 15, 489-493.
- Peng, J., Wang, P., Zhou, N. and Zhu, J. (2009). Partial correlation estimation by Joint sparse regression models. Journal of the American Statistical Association, 104, 735-746. https://doi.org/10.1198/jasa.2009.0126
- Shalev-Shwartz, S. and Tewari, A. (2011). Stochastic Methods for ℓ1-regularized loss minimization. Journal of Machine Learning Research, 12, 1865-1892.
- Tang, H., Xiao, G., Behrens, C., Schiller, J., Allen, J., Chow, C. W., Suraokar, M., Corvalan, A., Mao, J., White, M. A., Wistuba, I. I., Minna, J. D. and Xie, Y. (2013). A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clinical Cancer Research. 19, 1577-1586. https://doi.org/10.1158/1078-0432.CCR-12-2321
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 58, 267-288.
- Vandenberghe, L., Boyd, S. and Wu, S. P. (1998). Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications, 19, 499-533. https://doi.org/10.1137/S0895479896303430
- Witten, D., Friedman, J. and Simon, N. (2011). New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, 20, 892-900. https://doi.org/10.1198/jcgs.2011.11051a
- Yu, D. and Lim, J. (2013). Introduction to general purpose GPU computing. Journal of the Korean Data & Information Science Society, 24, 1043-1061. https://doi.org/10.7465/jkdi.2013.24.5.1043
- Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19-35. https://doi.org/10.1093/biomet/asm018