DOI QR코드

DOI QR Code

개선된 PPHT를 이용한 선분 인식 알고리즘

Line Segment Detection Algorithm Using Improved PPHT

  • Lee, Chanho (Dept. of Electronic Engineering, Soongsil University) ;
  • Moon, Ji-hyun (Dept. of Electronic Engineering, Soongsil University) ;
  • Nguyen, Duy Phuong (Dept. of Electronic Engineering, Soongsil University)
  • 투고 : 2016.03.07
  • 심사 : 2016.03.15
  • 발행 : 2016.03.31

초록

영상 인식에서 널리 이용되는 PPHT(Progressive Probability Hough Transform)는 직선을 정확하게 인식하는 우수한 알고리즘이나 원본 영상이 선명하지 않거나 복잡하여 잡음 성분이 많은 경우 인식률이 감소하는 문제가 있다. 이러한 문제를 해결하기 위해 잡음에 강하고 손상된 가장자리 패턴을 복구하며 직선을 인식하는 개선된 PPHT 방식을 제안한다. 제안하는 알고리즘은 픽셀 단위로 직선을 추적하고 검증하여 선분을 검출하는 방식으로 잡음의 영향을 최소화하고 손상된 가장자리 패턴을 일정 범위 내에서 복구하여 인식률을 증가시켰다. 제안한 알고리즘을 차선 인식에 적용하여 직선의 오인식률을 30% 이상 감소시키고 선분 인식률이 15%까지 증가함을 확인하였다.

The detection rate of Progressive Probability Hough Transform(PPHT) is decreased when a lot of noise components exist due to an unclear or complex original image although it is quite a good algorithm that detects line segments accurately. In order to solve the problem, we propose an improved line detecting algorithm which is robust to noise components and recovers slightly damaged edges. The proposed algorithm is based on PPHT and traces a line segments by pixel and checks of it is straight. It increases the detection rate by reducing the effect of noise components and by recovering edge patterns within a limited pixel size. The proposed algorithm is applied to a lane detection method and the false positive detection rate is decreased by 30% and the line detection rate is increased by 15%.

키워드

참고문헌

  1. Jae-Hyun Cho, Young-Min Jang, and Sang-Bok Cho, "A High-performance Lane Recognition Algorithm Using Word Descriptors and A Selective Hough Transform Algorithm with Four-channel ROI," Journal of The Institute of Electronics and Information Engineers, 52(2), pp. 148-161, 2015.2 https://doi.org/10.5573/ieie.2015.52.2.148
  2. Jeong-Rok Lee, Kyeong-ryeol Bae, and Byungin Moon, "A Hardware Architecture for Line Detection Based on Hough Transform with an Improved Voting Scheme," Journal of the Korean Institute of Communications and Information Sciences, 2013(1), pp. 88-89, 2013.9
  3. K. Hanahara, T. Maruyama and T. Uchiyama, "A real-time processor for the hough transform," Pattern Anal. Mach. Intell., 10(1), pp. 121-125, 1988.12 https://doi.org/10.1109/34.3876
  4. P. M. Daigavane, and P. R. Bajaj. "Road Lane Detection with Improved Canny Edges Using Ant Colony Optimization," 3rd International Conference on IEEE Emerging Trends in Engineering and Technology (ICETET), pp.76-80, Goa, India, 2010.11
  5. Samir Tagzout, Karim Achour and Oualid Djekoune, "Hough Transform Algorithm for FPGA Implementation," Signal Processing, 81(6), pp. 1295-1301, 2001.10 https://doi.org/10.1016/S0165-1684(00)00248-6
  6. J. Matas, C. Galambos, and J. Kittler, "Progressive Probabilistic Hough Transform," British Machine Vision Conference, 9(1), pp. 256-265, Southampton, England, 1998.9
  7. Thuy Tuong Nguyen, Xuan Dai Pham, and Jae Wook Jeon, "An improvement of the Standard Hough Transform to detect line segments," IEEE International Conference on Industrial Technology, pp. 1-6, Chengdu, China, 2008.4
  8. Dagao Duan, Meng Xie, Qian Mo, and Zhongming Han, "An improved Hough transform for line detection," International Conference on Computer Application and System Modeling, V2 pp. 354-357, Taiyuan, China, 2010.10
  9. Ji-Hyun Moon and Chanho Lee, "Efficient Implementation of Computing Unit for Hough Transform," 2015 International SoC Design Conference, pp. 279-280, Gyungju, Rep. of Korea, 2015.11