DOI QR코드

DOI QR Code

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control

MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로

  • Yang, Min-Jae (Dept. of Electronics Engineering, Incheon National University) ;
  • Yoon, Eun-Jung (Dept. of Electronics Engineering, Incheon National University) ;
  • Yu, Chong-Gun (Dept. of Electronics Engineering, Incheon National University)
  • Received : 2016.01.18
  • Accepted : 2016.02.25
  • Published : 2016.03.31

Abstract

This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.

본 논문에서는 진동에너지 수확을 위한 MPPT (Maximum Power Point Tracking) 제어 기능을 갖는 CMOS 인터페이스 회로를 설계하였다. 간단한 구조와 적은 비용으로 출력을 안정화시키기 위해 전력변환기인 DC-DC 부스트 변환기의 출력 단에 PMU (Power Management Unit)를 이용하는 구조를 제안하였다. 또한, 진동소자로부터 최대전력을 수확하여 시스템의 효율을 향상시키기 위해 FOC (Fractional Open Circuit) 방식의 MPPT 제어회로를 설계하였다. 진동소자 (PZT)에서 출력되는 AC 신호는 AC-DC 변환기를 통해 DC 신호로 변환되며, DC-DC 부스트 변환기를 거쳐 승압되고, PMU에 의해 듀티 (duty)를 갖는 안정화된 신호로 변환되어 부하로 공급된다. AC-DC 변환기는 효율 특성이 좋은 능동 다이오드를 이용한 전파정류기를 사용하였으며, DC-DC 부스트 변환기는 제어회로가 간단한 쇼트키 다이오드를 이용한 구조를 사용하였다. 제안된 회로는 $0.35{\mu}m$ CMOS 공정으로 설계되었으며, 설계된 칩의 면적은 $915{\mu}m{\times}895{\mu}m$이다. 설계된 회로의 성능을 검증한 결과 전체회로의 최대 전력효율은 83.4%이다.

Keywords

References

  1. Y. C. Kuoa, Y. M. Huanga, and L. J. Liub, "Integrated circuit and system design for renewable energy inverters," International Journal of Electrical Power & Energy Systems, vol. 64, pp. 50-57, 2014.
  2. S. Bandyopadhyay and A. P. Chandrakasan, "Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor," IEEE JSSC, pp. 2199-2215, 2012.
  3. C. Lu, C.-Y. Tsui, and W.-H. Ki, "Vibration energy scavenging system with maximum power tracking for micropower applications," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 19, no. 11, pp. 2109-2119, Nov. 2011. https://doi.org/10.1109/TVLSI.2010.2069574
  4. N. Kong and D. S. Ha, "Low-Power Design of a Self-powered Piezoeletric Energy Harvesting System With Maximum Power Point Tracking," IEEE Trans. on Power Electronics, vol. 27, no. 5, pp. 2298-2308, 2012. https://doi.org/10.1109/TPEL.2011.2172960
  5. M. Shim, et al., "Self-Powered $30{\mu}W$ to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time," IEEE JSSC, vol. 50, no. 10, pp. 1-13, Oct. 2015.
  6. Y. Rao and D. P. Arnold, "An Input-powered Vibrational Energy Harvesting Interface Circuit with Zero Standby Power," IEEE Trans. on Power Electronics, vol. 26, no. 12, pp. 3524-3533, 2011. https://doi.org/10.1109/TPEL.2011.2162530
  7. Y. K. Ramadass and A. P. Chandrakasan, "A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage," IEEE JSSC, vol. 46, no. 1, pp. 333-341, Jan. 2011.
  8. S. Bandyopadhyay and A. P. Chandrakasan, "Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor," IEEE JSSC, pp. 2199-2215, 2012.
  9. J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela, M. Puig-Vidal, and J. Samitier, "Power-Conditioning Circuitry for a Self-Powered System Based on Micro PZT Generators in a $0.13{\mu}m$ Low-Voltage Low-Power Technology," IEEE Trans. on Industrial Electronics, vol. 55, no. 9, pp. 3249-3257, September 2008. https://doi.org/10.1109/TIE.2008.927973
  10. M. D. Seeman, S. R. Sanders, and J. M. Rabaey, "An ultra-low-power power management IC for energy-scavenged wireless sensor nodes," in Proc. 2008 PESC, pp. 925-931, 2008.