DOI QR코드

DOI QR Code

The complete plastid genome of Scopolia parviflora (Dunn.) Nakai (Solanaceae)

  • Park, Jin Hee (Freshwater Bioresources Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Lee, Jungho (Green Plant Institute)
  • Received : 2016.03.07
  • Accepted : 2016.03.18
  • Published : 2016.03.31

Abstract

Scopolia parviflora of the family Solanaceae is an endemic species of Korea and a traditional Korean medicinal plant. The plastid genome was sequenced by next-generation sequencing (NGS) method. The characterized cp genome is 156,193 bp in size; the large single-copy (LSC) region is 86,364 bp, the inverted repeat (IR) is 25,905 bp, and the small single copy (SSC) region is 18,019 bp. The overall GC content of the plastid genome amounts to 37.61%. The cp genome contains 113 genes and 21 introns, including 80 proteincoding genes, four RNA genes, 30 tRNA genes, 20 group II introns, and one group I intron. A phylogenetic analysis showed that Scopolia parviflora was closely related to Hyoscyamus niger.

Keywords

References

  1. Besendahl, A., Y. L. Qiu, Lee, J. D. Palmer and D. Bhattacharya. 2000. The cyanobacterial origin and vertical transmission of the plastid tRNA(Leu) group-I intron. Current Genetics 37: 12-23. https://doi.org/10.1007/s002940050002
  2. Conant, G. C. and K. H. Wolfe. 2008. GenomeVx: simple webbased creation of editable circular chromosome maps. Bioinformatics 24: 861-862. https://doi.org/10.1093/bioinformatics/btm598
  3. Dunn, S. T. 1912. Some additions to Korean flora. Bulletin of Miscellaneous Information, Royal Gardens, Kew 1912: 108-109. https://doi.org/10.2307/4104543
  4. Hong, S.-P. and J.-H. Paik. 2001. Leaf epidermal microstructure of the genus Scopolia Jacq. s.l. (Solanaceae-Hyoscymeae) and its systematic significance. Korean Journal of Plant Taxonomy 31: 267-282. (in Korean) https://doi.org/10.11110/kjpt.2001.31.3.267
  5. Jeong, H., J. M. Lim, J. Park, Y. M. Sim, H. G. Choi, J. Lee and W. J. Jeong. 2014. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B. BMC Genomics 15: 286. doi: 10.1186/1471-2164-15-286
  6. Jung, H. Y., S. M. Kang, Y. M. Kang, M. J. Kang, D. J. Yun, J. D. Bahk, J. K. Yang and M. S. Choi. 2003. Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme and Microbial Technology 33: 987-90. https://doi.org/10.1016/S0141-0229(03)00253-9
  7. Kim, Y.-D., J.-H. Paik, S.-H. Kim and S.-P. Hong. 2003. Phylogeny of Scopolia Jaq. s. str. based on ITS sequences. Korean Journal of Plant Taxonomy 33: 373-386. (in Korean) https://doi.org/10.11110/kjpt.2003.33.4.373
  8. Laslett, D. and B. Canback. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research 32: 11-16. doi: 10.1093/nar/gkh152
  9. Lee, M., J. Park, H. Lee, S.-H. Sohn and J. Lee. 2015. Complete chloroplast genomic sequence of Citrus platymamma determined by combined analysis of Sanger and NGS data. Horticulture and Environmental Biotechnology 56: 704-711. https://doi.org/10.1007/s13580-015-0061-x
  10. Lee, Y. 1993. New taxa on Korean flora (5). Korean Journal of Plant Taxonomy 23: 263-268 (in Korean). https://doi.org/10.11110/kjpt.1993.23.4.263
  11. Lowe, T. M. and S. R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955-964. https://doi.org/10.1093/nar/25.5.0955
  12. Maximowicz, C. J. 1873. Diagnoses plantarum novarum Japoniae et Mandshuriae. Bulletin de l'Acadeimie Impeiriale des Sciences de St. Peitersbourg 18: 35-72.
  13. Min, J. Y., H. Y. Jung, S. M. Kang, Y. D. Kim, Y. M. Kang, D. J. Park, D. T. Prasad and M. S. Choi. 2007. Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresource Technology 98: 1748-1753. https://doi.org/10.1016/j.biortech.2006.07.033
  14. Mino, Y. 2002. Amino acid sequences of ferredoxins from Scopolia japonica and Lycium chinense: their similarities to that of Datura arborea. Biological Pharmceutical Bulletin 25: 1367-1369. https://doi.org/10.1248/bpb.25.1367
  15. Nakai, T. 1933. Notulae ad Plantas Japoniae & Koreae XLIII. Botanical Magazine 47: 235-267. https://doi.org/10.15281/jplantres1887.47.235
  16. Sanchez-Puerta, M. V. and C. C. Abbona. 2014. The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae). PLoS One 9: e98353. doi:10.1371/journal.pone.0098353.
  17. Schmitz-Linneweber, C., R. Regel, T. G. Du, H. Hupfer, R. G. Herrmann and R. M. Maier. 2002. The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Molecular Biology and Evolution 19: 1602-1612. https://doi.org/10.1093/oxfordjournals.molbev.a004222
  18. Sugimoto, J. 1977. Notes on flora of Japan (3). Journal of Geobotany 26: 59-64. (in Japanese)
  19. Wyman, S. K., R. K. Jansen and J. L. Boore. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. doi: 10.1093/bioinformatics/bth352
  20. Yang, Y., Y. Dang, Q. Li, J. Lu, X. Li and Y. Wang. 2014. Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS One 9: e110656.doi: 10.1371/journal.pone.0110656