DOI QR코드

DOI QR Code

Comparison of digital models generated from three-dimensional optical scanner and cone beam computed tomography

3차원 광학 스캐너와 콘빔CT에서 생성된 디지털 모형의 비교

  • Kwon, Hyuk-Jin (Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Kack-Kyun (Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University) ;
  • Yi, Won-Jin (Department of Oral and Maxillofacial Radiology, School of Dentistry, Seoul National University)
  • 권혁진 (서울대학교 치의학대학원 치의학과) ;
  • 김각균 (서울대학교 치의학대학원 구강악안면 감염 및 면역학교실) ;
  • 이원진 (서울대학교 치의학대학원 구강악안면방사선학교실)
  • Received : 2016.02.22
  • Accepted : 2016.03.16
  • Published : 2016.03.31

Abstract

Purpose: The objective of this study was to compare the accuracy of digital models from 3 dimentional (3D) optical scanner and cone beam computed tomography (CBCT). Materials and Methods: We obtained digital models from 11 pairs of stone casts using a 3D optical scanner and a CBCT, and compared the accuracy of the models. Results: The error range of average positive distance was 0.059 - 0.117 mm and negative distance was 0.066 - 0.146 mm. Statistically (P < 0.05), average positive distance was larger than $70{\mu}m$ and shorter than $100{\mu}m$, and that of negative distance was larger than $100{\mu}m$ and shorter than $120{\mu}m$. Conclusion: We concluded that the accuracy of digital models generated from CBCT is not appropriate to make final prostheses. However, it may be acceptable for provisional restorations and orthodontic diagnoses with respect to the accuracy of the digitalization.

목적: 본 연구에서는 실제 환자의 석고모형의 콘빔CT (Cone Beam Computed Tomography)이미지로 디지털 모델을 제작하고 이 디지털 모델을 동일한 석고모형을 3차원 광학 스캐너로 스캔 하여 얻은 디지털 모델과 비교하였다. 연구 재료 및 방법: 총 11쌍의 석고모형에 대하여 실험을 진행 하였다. 콘빔CT를 이용하여 CT 영상을 촬영하여 디지털 모델을 제작 하였고 3차원 광학 스캐너를 사용해 대조군이 되는 디지털 모델을 제작하였다. 이를 이용해 각 석고모형에 대하여 콘빔CT와 3차원 광학 스캐너를 이용하여 만든 디지털 모델을 한 쌍으로 묶어 상, 하악 11개의 비교 쌍을 구성하고 각 쌍에 대하여 차이점을 분석하였다. 결과: 대조군과 비교 시 콘빔CT 영상으로부터 구성된 디지털 모델이 대조군 보다 과다 추정된 부분인 양의 오차의 평균은 0.059 - 0.117 mm, 과소 추정된 부분인 음의 오차의 평균은 0.066 - 0.146 mm의 범위 내에 존재했다. 또한 유의수준 0.05에서 양의 오차의 평균은 $70-100{\mu}m$, 음의 오차의 평균은 $100-120{\mu}m$ 내에 존재 함을 확인하였다. 결론: 석고모형의 콘빔CT 영상으로부터 구성된 디지털 모델은 최종 수복물 제작에는 부적합하나 임시수복물 제작 및 교정 진단 과정에 활용될 수 있는 가능성이 있다.

Keywords

References

  1. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent 2013;109:121-8. https://doi.org/10.1016/S0022-3913(13)60028-1
  2. Bootvong K, Liu Z, McGrath C, Hagg U, Wong RW, Bendeus M, Yeung S. Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod 2010;32:589-95. https://doi.org/10.1093/ejo/cjp159
  3. Birnbaum NS, Aaronson HB. Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent 2008;29:494, 496, 498-505.
  4. Patzelt SB, Bishti S, Stampf S, Att W. Accuracy of computer-aided design/computer-aided manufacturing- generated dental casts based on intraoral scanner data. J Am Dent Assoc 2014;145:1133-40. https://doi.org/10.14219/jada.2014.87
  5. Cuperus AM, Harms MC, Rangel FA, Bronkhorst EM, Schols JG, Breuning KH. Dental models made with an intraoral scanner: a validation study. Am J Orthod Dentofacial Orthop 2012;142:308-13. https://doi.org/10.1016/j.ajodo.2012.03.031
  6. Lee CY, Ganz SD, Wong N, Suzuki JB. Use of cone beam computed tomography and a laser intraoral scanner in virtual dental implant surgery: part 1. Implant Dent 2012;21:265-71. https://doi.org/10.1097/ID.0b013e31825e5739
  7. Frisardi G, Chessa G, Barone S, Paoli A, Razionale A, Frisardi F. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery. BMC Med Imaging 2011;11:5. https://doi.org/10.1186/1471-2342-11-5
  8. Swennen GR, Mommaerts MY, Abeloos J, De Clercq C, Lamoral P, Neyt N, Schutyser FA. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface. Int J Oral Maxillofac Surg 2009;38:48-57. https://doi.org/10.1016/j.ijom.2008.11.006
  9. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 2009;136:16.e1-4.
  10. Zhao S, Robertson DD, Wang G, Whiting B, Bae KT. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. IEEE Trans Med Imaging 2000;19:1238-47. https://doi.org/10.1109/42.897816
  11. Lim DO, Seo GS, Kim JY. Korea health industry statistics system - 2013 medical device market research report. Available from: http://www. khiss.go.kr/board/bbs_read.jsp?tname=MIN BOARD358&bbsid=B302&cat_bbsid=&bbs_ seq=415&jkey=&jword=&pg=1&htxt_code=125 3697824500862357829650921550&wj_vcs=&reverseNum=196&forwardNum=1 (updated 2016 Feb 22).
  12. Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop 2009;136:19-25. https://doi.org/10.1016/j.ajodo.2007.09.016
  13. Mischkowski RA, Pulsfort R, Ritter L, Neugebauer J, Brochhagen HG, Keeve E, Zoller JE. Geometric accuracy of a newly developed cone-beam device for maxillofacial imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:551-9. https://doi.org/10.1016/j.tripleo.2007.02.021
  14. Kato A, Ohno N. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clin Oral Investig 2009;13:43-6. https://doi.org/10.1007/s00784-008-0198-4
  15. Tarazona B, Llamas JM, Cibrian R, Gandia JL, Paredes V. A comparison between dental measurements taken from CBCT models and those taken from a digital method. Eur J Orthod 2013;35:1-6. https://doi.org/10.1093/ejo/cjr005
  16. Kang SH, Lee JW, Lim SH, Kim YH, Kim MK. Dental image replacement on cone beam computed tomography with three-dimensional optical scanning of a dental cast, occlusal bite, or bite tray impression. Int J Oral Maxillofac Surg 2014;43:1293-301. https://doi.org/10.1016/j.ijom.2014.06.009
  17. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30;1323-41. https://doi.org/10.1016/j.mri.2012.05.001
  18. Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J 2009;15:216-25. https://doi.org/10.1108/13552540910961946
  19. Kuo RF, Chen SJ, Wong TY, Lu BC, Huang ZH. Digital morphology comparisons between models of conventional intraoral casting and digital rapid prototyping. Springer International Publishing, 2015;478-80.
  20. Commer P, Bourauel C, Maier K, Jager A. Construction and testing of a computer-based intraoral laser scanner for determining tooth positions. Med Eng Phys 2000;22:625-35. https://doi.org/10.1016/S1350-4533(00)00076-X
  21. Lim MY, Lim SH. Comparison of model analysis measurements among plaster model, laser scan digital model, and cone beam CT image. Korean J Orthod 2009;39:6-17. https://doi.org/10.4041/kjod.2009.39.1.6
  22. Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent 1966;16: 297-305. https://doi.org/10.1016/0022-3913(66)90082-5
  23. Hung SH, Hung KS, Eick JD, Chappell RP. Marginal fit of porcelain-fused-to-metal and two types of ceramic crown. J Prosthet Dent 1990;63:26-31. https://doi.org/10.1016/0022-3913(90)90260-J
  24. Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent 1991;66:747-53. https://doi.org/10.1016/0022-3913(91)90408-O
  25. Beuer F, Naumann M, Gernet W, Sorensen JA. Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig 2009;13:343-9. https://doi.org/10.1007/s00784-008-0224-6
  26. Belser UC, MacEntee MI, Richter WA. Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. J Prosthet Dent 1985;53:24-9. https://doi.org/10.1016/0022-3913(85)90058-7
  27. Proussaefs P. Crowns cemented on crown preparations lacking geometric resistance form. Part II: effect of cement. J Prosthodont 2004;13:36-41. https://doi.org/10.1111/j.1532-849X.2004.04008.x
  28. Karlsson S. The fit of Procera titanium crowns. An in vitro and clinical study. Acta Odontol Scand 1993;51:129-34. https://doi.org/10.3109/00016359309041158
  29. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  30. Pompa G, Di Carlo S, De Angelis F, Cristalli MP, Annibali S. Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: an in vitro study. BioMed Res Int 2015;2015:318097.
  31. Givens EJ Jr, Neiva G, Yaman P, Dennison JB. Marginal adaptation and color stability of four provisional materials. J Prosthodont 2008;17:97-101. https://doi.org/10.1111/j.1532-849X.2007.00256.x

Cited by

  1. 단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교 vol.57, pp.2, 2019, https://doi.org/10.4047/jkap.2019.57.2.102