References
- D. V. Alekseevsky and S. Marchiafava, Almost complex submanifolds of quaternionic manifolds, Steps in differential geometry (Debrecen, 2000), 23-38, Inst. Math. Inform., Debrecen, 2001.
- P. Baird and J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, The Clarendon Press, Oxford University Press, Oxford, 2003.
- A. L. Besse, Einstein Manifolds, Springer Verlag, Berlin, 1987.
- J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. https://doi.org/10.1007/BF01942061
- J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), 143-163.
- B. Y. Chen, Geometry of Slant Submaniflods, Katholieke Universiteit Leuven, Leuven, 1990.
- V. Cortes, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry 1. Vector multiplets, J. High Energy Phys. (2004), 03, 028.
- M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., 2004.
- A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
- S. Ianus, A. M. Ionescu, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), no. 1, 101-114. https://doi.org/10.1007/s12188-011-0049-0
- S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3
- S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. https://doi.org/10.1088/0264-9381/4/5/026
- S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, (1991), 358-371, World Scientific, River Edge.
- S. Ishihara, Quaternion Kahlerian manifolds, J. Differential Geom. 9 (1974), 483-500. https://doi.org/10.4310/jdg/1214432544
- M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 458-469.
- K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338. https://doi.org/10.4134/BKMS.2012.49.2.329
- K. S. Park, H-semi-invariant submersions, Taiwanese J. Math. 16 (2012), no. 5, 1865-1878. https://doi.org/10.11650/twjm/1500406802
- K. S. Park, H-semi-slant submersions from almost quaternionic Hermitian manifolds, Tai-wanese J. Math. 18 (2014), no. 6, 1909-1926. https://doi.org/10.11650/tjm.18.2014.4079
- K. S. Park, V-semi-slant submersions from almost Hermitian manifolds, arXiv: 1206.1404v1 [math.DG].
- K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962. https://doi.org/10.4134/BKMS.2013.50.3.951
- B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.
- B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2013), no. 1, 173-183. https://doi.org/10.4153/CMB-2011-144-8
- B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), no. 1, 147-165. https://doi.org/10.4310/jdg/1214433303
- B. Watson, G,G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math. 57 (1983), 324-349, Teubner, Leipzig.
Cited by
- Semi-slant Riemannian map 2017, https://doi.org/10.2989/16073606.2017.1368732