Abstract
In this paper, a boundary version of the Schwarz lemma is investigated. We take into consideration a function $f(z)=z+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+{\cdots}$ holomorphic in the unit disc and $\|\frac{f(z)}{{\lambda}f(z)+(1-{\lambda})z}-{\alpha}\|$ < ${\alpha}$ for ${\mid}z{\mid}$ < 1, where $\frac{1}{2}$ < ${\alpha}$ ${\leq}{\frac{1}{1+{\lambda}}}$, $0{\leq}{\lambda}$ < 1. If we know the second and the third coefficient in the expansion of the function $f(z)=z+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+{\cdots}$, then we can obtain more general results on the angular derivatives of certain holomorphic function on the unit disc at boundary by taking into account $c_{p+1}$, $c_{p+2}$ and zeros of f(z) - z. We obtain a sharp lower bound of ${\mid}f^{\prime}(b){\mid}$ at the point b, where ${\mid}b{\mid}=1$.