DOI QR코드

DOI QR Code

국가R&D정보에 대한 온톨로지 기반 지식맵 서비스

Knowledge Map Service based on Ontology of Nation R&D Information

  • 김선태 (한국과학기술정보연구원 과학데이터연구센터) ;
  • 이원구 (충남도립대학교 컴퓨터정보과)
  • Kim, Sun-Tae (Science Data Research Center, KISTI) ;
  • Lee, Won-Goo (Dept. of Computer Information, Chungnam State University)
  • 투고 : 2016.01.24
  • 심사 : 2016.03.20
  • 발행 : 2016.03.28

초록

과학기술 및 R&D 연구자는 선행 연구와 그 개발 결과에 대해 조사 분석하는데 많은 시간을 소비한다. 그리고 최근에는 효과적인 정보검색을 위해 시맨틱 웹을 비롯한 다양한 검색기술을 제공하고 있으며, 특히 온톨로지를 이용한 검색기술은 가장 효과적인 방법으로 알려져 있다. 이에, 본 연구는 국가 R&D정보(사업 및 과제정보), 그 사업 및 과제 수행을 통한 성과물(논문, 특허, 보고서, 기술이전 정보 등), 그리고 사업 및 과제와 연관된 정보(동향, 연구자, 용어 정보 등)를 연계하여 지식베이스(RDF-Triple)를 모델링하고, 이를 지식맵 서비스로 구현하여 연구자에게 국가 R&D정보를 한 눈에, 한 곳에서 국가 R&D정보를 살펴볼 수 있게 하는 것이다. 이를 통해, 정책가(정책입안자)에게는 R&D 전략 수립 과정 및 의사 결정을 지원할 수 있으며, 연구자에게는 선행 연구에 대한 조사 분석 시간 단축 및 새로운 연구 주제를 도출할 수 있는 기회를 제공할 수 있다.

Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patent, and project reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer the further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a RDB-to-Triples transformer is implemented. Lastly, we show an experiment on R&D data integration using the lightweight ontology, triples generation, and visualization and navigation of the knowledge map.

키워드

참고문헌

  1. L. Rao, G. Mansingh and K. M. Osei-Bryson, "Building ontology based knowledge maps to assist business process re-engineering," Decision Support Systems, vol. 52, no. 3, pp 577-589, 2012. https://doi.org/10.1016/j.dss.2011.10.014
  2. R. Krishnan, A. Hussain and P. C. Sherimon, "Retrieval of semantic concepts based on analysis of texts for automatic construction of ontology," In Neural Information Processing, pp 524-532, 2012.
  3. J. Morbach, A. Wiesner and W. Marquardt, "OntoCAPE-A (re) usable ontology for computer-aided process engineering," Computers & Chemical Engineering, vol. 33, no. 10, 1546-1556, 2009. https://doi.org/10.1016/j.compchemeng.2009.01.019
  4. L. Businska, I. Supulniece and M. Kirikova, "On data, information, and knowledge representation in business process models," In Information Systems Development, Springer New York, pp 613-627, 2013.
  5. R. Klavans and K. W. Boyack, "Toward a consensus map of science," Journal of the American Society for information science and technology, vol. 60, no. 3, pp 455-476, 2009. https://doi.org/10.1002/asi.20991
  6. L. Leydesdorff and I. Rafols, "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, vol. 60, no. 2, 348-362, 2009. https://doi.org/10.1002/asi.20967
  7. M. alhaji Musa, M. S. Othman, and W. M. Al-Rahimi, "Ontology driven knowledge map for enhancing business process reengineering," 2013.
  8. A. Maaref, and M. N. Ahmad, "Designing Successful Strategy for Business Process Outsourcing Based on Ontological Knowledge Map," Journal of Poverty, Investment and Development, vol. 1, pp 76-83, 2013.
  9. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes and C. Bizer, "DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia," Semantic Web, 2014
  10. B. J. Stucky, J. Deck, T. Conlin, L. Ziemba, N. Cellinese and R. Guralnick, "The BiSciCol Triplifier: bringing biodiversity data to the Semantic Web," BMC bioinformatics, vol. 15, no. 1, 257, 2014. https://doi.org/10.1186/1471-2105-15-257
  11. T. Tudorache, C. Nyulas, N.F. Noy and M. A. Musen, "WebProtege: A collaborative ontology editor and knowledge acquisition tool for the web," Semantic web, vol. 4, no. 1, pp 89-99, 2013. https://doi.org/10.3233/SW-2012-0057
  12. A. M. A. T. Moustafa, F. Giunchiglia and V. Maltese, "A Collaborative Platform for multilingual Ontology Development," 2014.
  13. M. Strohmaier, S. Walk, J. Pöschko, D. Lamprecht, T. Tudorache, C. Nyulas and N. F. Noy, "How ontologies are made: Studying the hidden social dynamics behind collaborative ontology engineering projects," Web Semantics: Science, Services and Agents on the World Wide Web, vol. 20, pp 18-34, 2013. https://doi.org/10.1016/j.websem.2013.04.001
  14. H. A. Santoso, S. C. Haw and Z. T. Abdul-Mehdi, "Ontology extraction from relational database: Concept hierarchy as background knowledge," Knowledge-Based Systems, vol. 24, no. 3, pp 457-464, 2011. https://doi.org/10.1016/j.knosys.2010.11.003
  15. J. F. Sequeda, M. Arenas and D. P. Miranker, "On directly mapping relational databases to RDF and OWL," In Proceedings of the 21st international conference on World Wide Web, ACM, pp 649-658, 2012.
  16. S.J. Kim, I.S. Kim, J.H. Jeon, "Index for Efficient Ontology Retrieval and Inference", Society for E-Business Studies Journal, vol. 18, no. 2, pp.153-173, 2013 https://doi.org/10.7838/jsebs.2013.18.2.153
  17. J.W. Kim, M.S. Bae, "Effective Indexing for Evolving Data Collection by Using Ontology", Korea Multimedia Society Journal, vol. 17, no. 2, pp.240-247, 2014 https://doi.org/10.9717/kmms.2014.17.2.240
  18. Jae-Yong Lee, "Software Development Process Improvement Training and Collaboration Capabilities Optimized to the Psychological Type of ICT Engineer", Journal of the Korea Convergence Society, Vol. 6, No. 4, pp. 105-111, 2015. https://doi.org/10.15207/JKCS.2015.6.4.105
  19. Hyun-Sook Chung, Jeong-Min Kim, "Design of Semantic Models for Teaching and Learning based on Convergence of Ontology Technology", Journal of the Korea Convergence Society, Vol. 6, No. 3, pp. 127-134, 2015.