DOI QR코드

DOI QR Code

카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성

The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template

  • 이상민 (충남대학교 공과대학 정밀응용화학과) ;
  • 김지현 (충남대학교 공과대학 정밀응용화학과) ;
  • 정의경 (국방과학연구소) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Lee, Sangmin (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 투고 : 2015.09.16
  • 심사 : 2015.12.08
  • 발행 : 2016.04.01

초록

탄소 폼의 기계적 강도를 향상시키기 위하여, PVA 용액에 다양한 함량의 카본블랙 및 메조페이스 핏치를 첨가하여 폴리우레탄 폼에 함침한 후 열처리를 통하여 카본블랙이 첨가된 탄소 폼을 제조하였다. 탄소 폼의 셀 벽의 두께는 첨가된 카본블랙의 함량에 따라 조절되며, 탄소 폼의 압축강도는 셀 벽의 두께가 증가함에 따라 증가되는 것이 확인되었다. 이에 따라 핏치 함량 대비 5 wt%의 카본블랙을 탄소 폼에 첨가하였을 때 가장 높은 $0.44g/cm^3$의 겉보기 밀도에서 가장 높은 $0.22{\pm}0.05MPa$의 압축강도가 얻어졌다. 그러나 탄소 폼의 열전도도는 카본블랙이 첨가되었을 때 오히려 감소하는 것으로 나타났다. 이러한 결과는 탄소 폼에 카본블랙 첨가로 인한 흑연 층간 간격($d_{002}$)의 증가로 탄소 폼의 열전도도가 오히려 감소되는 것으로 나타났다.

To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of $0.22{\pm}0.05MPa$ with the highest bulk density of $0.44g/cm^3$ when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing ($d_{002}$) with the addition of CB in carbon foams.

키워드

참고문헌

  1. Kim, W. and Gong, H. J., "Properties of Epoxy Adhesive Modified with Siloxane-imide," Elastom. Compos., 43, 39-48(2008).
  2. Roh, J. S., Ahn, J. S., Kim, B. J., Jeon, H. Y., Seo, S. K., Kim, S. H. and Lee, S. W., "Thermal Emissivity Changes as a Function of Degree of Flakes Alignment on the Graphite Surface," J. Korean Inst. Surf. Eng., 42, 95-101(2009). https://doi.org/10.5695/JKISE.2009.42.2.095
  3. Im, H. and Kim, J. H., "Study on the Electrical Conductivity in Polysiloxane/Metal Composite Containing Metal Oxide," J. Korean Ind. Eng. Chem., 20, 307-312(2009).
  4. Glazer, J., "Current Development in Electronic Packaging Materials," Jom. J. Miner. Met. Mater. Soc., 43(6), 7-7(1991).
  5. Lei, S., Guo, Q., Shi, J. and Liu, L., "Prepartion of Phenolic-Based Carbon Foam with Controllable Pore Structure and High Compressive Strength," Carbon, 48, 2644-2673(2010). https://doi.org/10.1016/j.carbon.2010.03.017
  6. Kyung, J. J., "Preparation and Characterization of SiC Coated Graphite Foam," J. Korean Ceram. Soc., 44, 622-626(2007). https://doi.org/10.4191/KCERS.2007.44.1.622
  7. Mehta, R., Anderson, D. P. and Hager, J. W., "Graphitic Open-Celled Carbon Foams: Processing and Characterization," Carbon, 41, 2159-2179(2001).
  8. Klett, J., Hardy, R., Romine, E., Walls, C. and Burchell, T., "High-Thermal-Conductivity, Mesophase-Pitch-Derived Carbon Foams: Effect of Precursor on Structure and Properties," Carbon, 38, 953-973(2000). https://doi.org/10.1016/S0008-6223(99)00190-6
  9. Yang, Y., Gupta, M. C., Dudley, K. L. and Lawrence, R. W., "Conductive Carbon Nanofiber-Polymer Foam Structures," Adv. Mater., 17, 1999-2003(2005). https://doi.org/10.1002/adma.200500615
  10. Bekyarova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T, W., Itkis, M. E. and Haddon, R. C., "Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites," Langmuir, 23, 3970-3974(2007). https://doi.org/10.1021/la062743p
  11. Shahil, K. M. F. and Balandin, A. A., "Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials," Nano Lett., 12, 861-867(2012). https://doi.org/10.1021/nl203906r
  12. Nah, C. W., Kim, W. D. and Lee, S., "Effects of Carbon Black Content and Vulcanization Type on Cure Characterstics and Dynamic Mechanical Property of Styrene-Butadiene Rubber Compound," Korea Polym. J., 9, 157-163(2001).
  13. Li, W. Q., Zhang, H. B., Xiong, X. and Xiao, F., "A Study of the Properties of Mesophase-Pitch-based Foam/Graphitized Carbon Black Composites," Mater. Sci. Eng.: A, 528(6), 2999-3002(2001). https://doi.org/10.1016/j.msea.2010.12.013
  14. Sedeh, M. M. and Khodadadi, J. M., "Thermal Conductivity Improvement of Phase Change Materials/Graphite Foam Composites," Carbon, 60, 117-128(2013). https://doi.org/10.1016/j.carbon.2013.04.004
  15. Ji, H., Zhang, L., Pettes, M. T., Li, H., Chen, S., Li, S., Piner, R. and Ruoff, R. S., "Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes," Nano lett., 12, 2446-2451(2012). https://doi.org/10.1021/nl300528p
  16. Ji, J., Ji, H., Zhang, L. L., Zhao, X., Bai, X., Fan, X., Zhang, F. and Ruoff, R. S., "Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries," Adv. Mater., 25, 4673-4677(2013). https://doi.org/10.1002/adma.201301530
  17. Yadav, A., Kumar, R., Bhatia, G. and Verma, G. L., "Development of Mesophase Pitch Derived High Thermal Conductivity Graphite Foam Using a Template Method," Carbon, 49, 3622-3630(2011). https://doi.org/10.1016/j.carbon.2011.04.065
  18. Im, J. S., Kim, J. G. and Lee, Y. S., "Fluorination Effects of Carbon Black Additives for Electrical Properties and EMI Shielding Efficiency by Improved Dispersion and Adhesion," Carbon, 47, 2640-2647(2009). https://doi.org/10.1016/j.carbon.2009.05.017
  19. Moon, Y. E., Yun, J. M., Kim, H. I. and Lee, Y. S., "Effect of Graphite Oxide on Photodegradation Behavior of Poly(vinyl alcohol)/Graphite Oxide Composite Hydrogels," Carbon Lett., 12, 138-142(2011). https://doi.org/10.5714/CL.2011.12.3.138
  20. Li, Z. Q., Lu, C. J., Xia, Z. P., Zhou, Y. and Luo, Z., "X-ray Diffraction Patterns of Graphite and Turbostratic Carbon," Carbon, 45, 1686-1695(2007). https://doi.org/10.1016/j.carbon.2007.03.038
  21. Park, S. J., Kim, K. S. and Hong, S. K., "Preparation and Characterization of Expaned Graphites by Wet Process," Korean Chem. Eng. Res., 41, 802-807(2003).
  22. Cho, K. Y., Kim, K. J. and Riu, D. H., "Effect of Heating Rate and Pressute on Pore Growth of Porous Carbon Materials," Carbon Latt., 7, 271-276(2006).
  23. Manocha, S. M., Patel, K. and Manocha, L. M., "Development of Carbon Foam from Pphenolic Resin via Template Route," Indian J. Eng. Mater. Sci., 17, 338-342(2010).

피인용 문헌

  1. Polyurethane Composite Foams in High-Performance Applications: A Review vol.57, pp.4, 2018, https://doi.org/10.1080/03602559.2017.1329433
  2. 불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.830
  3. The effects of carbon coating onto graphite filler on the structure and properties of carbon foams vol.21, pp.None, 2016, https://doi.org/10.5714/cl.2017.21.111
  4. 초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구 vol.55, pp.2, 2016, https://doi.org/10.9713/kcer.2017.55.2.220