DOI QR코드

DOI QR Code

Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells

효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향

  • Received : 2015.09.22
  • Accepted : 2015.10.14
  • Published : 2016.04.01

Abstract

Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

효소 전극 cathode와 PEMFC용 전극 anode를 이용하여 효소연료전지를 구동하였다. 효소 cathode는 그래파이트 분말과 효소로서 Laccase, 산화환원 매개체로서 ABTS를 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. cathode 제조조건을 변화시키며 OCV를 측정해 효소 cathode 제조 최적조건을 찾았다. 효소 cathode 압축 시 최적 압력은 4.0 bar 였다. 효소 cathode에서 그래파이트가 95%일 때 최고의 OCV를 나타냈다. cathode기질 용액의 최적 글루코스 농도는 0.4 mol/l이었다.

Keywords

References

  1. Bruce, E. L., Bert, H., Rene, R., Uwe, S., Jurg, K., Stefano, F., Peter, A., Willy, V. and Korneel, R., "Microbial Fuel Cells : Methodology and Technology," Environ. Sci. Technol., 40, 5181-5192(2006). https://doi.org/10.1021/es0605016
  2. Adam, H., "Miniature Biofuel Cells," Physical Chemistry Chemical Physics, 6, 209-216(2004). https://doi.org/10.1039/b313149a
  3. Nicolas, M., Fei, M. and Adam, H., "Characteristics of a Miniature Compartment-less Glucose-$O_2$ Biofuel Cell and Its Operation in a Living Plant," Journal of the American Chemical Society, 125, 6588-6594(2003). https://doi.org/10.1021/ja0346328
  4. Nicolas, M., Fei, M. and Adam, H., "A Miniature Biofuel Cell Operating in A Physiological Buffer," Journal of the American Chemical Society, 124, 12962-12963(2002). https://doi.org/10.1021/ja028514g
  5. Nicolas, M., Fei, M., Woonsup, S., Ting, C. and Adam, H., "A Miniature Biofuel Cell Operating at 0.78 V," Chemical Communications, 518-519(2003).
  6. Donal, L., Paul, K., Wolfgang, S., "Enzymatic Fuel Cells: Recent Progress," Electrochimica Acta, 84, 223-234(2012). https://doi.org/10.1016/j.electacta.2012.02.087
  7. Bruce, E. L., "Microbial Fuel Cells," Wiley-Interscience(2007).
  8. Juozas, K., Regina, V. and Palle, S., "Laccase Catalyzed Oxidation of Naphthol in the Presence of Soluble Polymers," Enzyme and Microbial Technology, 32, 455-463(2003). https://doi.org/10.1016/S0141-0229(02)00342-3
  9. Noriko, Y., Masamitsu, T., Junko, O., Satoshi, I., Kazunori, I. and Koji, S., "Development of a Novel Glucose Enzyme Fuel Cell System Employing Protein Engineered PQQ Glucose Dehydrogenase," Biosensors and Bioelectronics, 20, 2145-2150 (2005). https://doi.org/10.1016/j.bios.2004.08.017
  10. Zebda, A., Gondran, C., Le Goff, A. and Holzinger, M., "Mediatorless High-power Glucose Biofuel Cells Based on Compressed Carbon Nanotube-enzyme Electrodes," Nat.Commun. 2, 1-6(2001).
  11. Ross, D. M., Fabien, G. and Alfred, E. T., "Glucose Oxidase Progressively Lowers Bilirubin Oxidase Bioelectrocatalytic Cathode Performance in Single-compartment Glucose/oxygen Biological Fuel Cells," Electrochimica Acta. 140, 59-64(2014). https://doi.org/10.1016/j.electacta.2014.02.058
  12. Peter, J., Saara, T., Anu, V., Matti, V., Maria, S. and Donal, L., "A Mediated Glucose/oxygen Enzymatic Fuel Cell Based on Printed Carbon Inks Containing Aldose Dehydrogenase and Laccase as Anode and Cathode," Enzyme and Microbial Technology, 50, 181-187(2012). https://doi.org/10.1016/j.enzmictec.2011.12.002
  13. Seiya, T., Kenji, K. and Tokuji, I., "Glucose/$O_2$, Biofuel Cell Operating at Physiological Conditions," Electrochemistry, 70, 940(2002).
  14. Fuyuki, S., Makoto, T., Mohammed, K. I., Tomokazu, M., Junichi, K., Noboru, F., Satoshi, K. and Matsuhiko, N., "Enzyme-based Glucose Fuel Cell Using Vitamin K3-immobilized Polymer as An Electron Mediator," Electochemistry Communication, 7, 643-647(2005). https://doi.org/10.1016/j.elecom.2005.04.015
  15. Kim, H., Lee, I., Kwon, Y., Kim, B., Ha, S., Lee, J. and Kim, J., "Immobilization of Glucose Oxidase Into Polyaniline Nanofiber Matrix for Biofuel Cell Applications," Biosensors and Bioelectronics, 26, 3908-3913(2011). https://doi.org/10.1016/j.bios.2011.03.008
  16. Cosnier, S., Shan, D., Ding, S.-N., "An Easy Compartment-less Biofuel Cell Construction Based on the Physical co-inclusion of Enzyme and Mediator Redox Within Pressed Graphite Discs," Electrochemistry Communications, 12, 266-269(2010). https://doi.org/10.1016/j.elecom.2009.12.011
  17. Abdelkader, Z., Chantal, G., Philippe, C. and Serge, C., "Glucose Biofuel Cell Construction Based on Enzyme, Graphite Particle and Redox Mediator Compression," Sensors and Actuators B, 173, 760-764(2012). https://doi.org/10.1016/j.snb.2012.07.089
  18. Luo, H., Jin, S., Fallgren, P. H., Park, H. J. and Johnson, P. A., "A Novel Laccase-catalyzed Cathode for Microbial Fuel Cells," Chemical Engineering Journal, 165, 524-528(2010). https://doi.org/10.1016/j.cej.2010.09.061
  19. Kim, Y. S., Lee, S. H., Chu, C. H., Na, I. C., Lee, H. and Park, K. P., "Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells," Korean Chem. Eng. Res., 53, 6-10(2015). https://doi.org/10.9713/kcer.2015.53.1.6
  20. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6

Cited by

  1. 벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.258