Abstract
In research on behavioral studies, significant attention has been paid to the stage-sequential process for longitudinal data. Latent class profile analysis (LCPA) is an useful method to study sequential patterns of the behavioral development by the two-step identification process: identifying a small number of latent classes at each measurement occasion and two or more homogeneous subgroups in which individuals exhibit a similar sequence of latent class membership over time. Maximum likelihood (ML) estimates for LCPA are easily obtained by expectation-maximization (EM) algorithm, and Bayesian inference can be implemented via Markov chain Monte Carlo (MCMC). However, unusual properties in the likelihood of LCPA can cause difficulties in ML and Bayesian inference as well as estimation in small samples. This article describes and addresses erratic problems that involve conventional ML and Bayesian estimates for LCPA with small samples. We argue that these problems can be alleviated with a small amount of prior input. This study evaluates the performance of likelihood and MCMC-based estimates with the proposed prior in drawing inference over repeated sampling. Our simulation shows that estimates from the proposed methods perform better than those from the conventional ML and Bayesian method.