참고문헌
- Bura E and Cook RD (2001). Extending sliced inverse regression: the weighted chi-squared test, Journal of the American Statistical Association, 96, 996-1003. https://doi.org/10.1198/016214501753208979
- Cook RD (1998a). Regression Graphics: Ideas for Studying Regressions through Graphics, Wiley, New York.
- Cook RD (1998b). Principal Hessian directions revisited, Journal of the American Statistical Association, 93, 84-94. https://doi.org/10.1080/01621459.1998.10474090
- Cook RD and Critchley F (2000). Identifying regression outliers and mixtures graphically, Journal of the American Statistical Association, 95, 781-794. https://doi.org/10.1080/01621459.2000.10474270
- Cook RD and Li B (2002). Dimension reduction for the conditional mean in regression, Annals of Statistics, 30, 455-474. https://doi.org/10.1214/aos/1021379861
- Cook RD and Li B (2004). Determining the dimension of iterative Hessian transformation, Annals of Statistics, 32, 2501-2531. https://doi.org/10.1214/009053604000000661
- Cook RD, Li B, and Chiaromonte F (2007). Dimension reduction in regression without matrix inversion, Biometrika, 94, 569-584. https://doi.org/10.1093/biomet/asm038
- Cook RD and Weisberg S (1991). Comment: Sliced inverse regression for dimension reduction by KC Li, Journal of the American Statistical Association, 86, 328-332.
- Cook RD and Zhang X (2014). Fused estimators of the central subspace in sufficient dimension reduction, Journal of the American Statistical Association, 109, 815-827. https://doi.org/10.1080/01621459.2013.866563
- Li KC (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 316-327. https://doi.org/10.1080/01621459.1991.10475035
- Li KC (1992). On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma, Journal of the American Statistical Association, 87, 1025-1039. https://doi.org/10.1080/01621459.1992.10476258
- Shao Y, Cook RD, and Weisberg S (2007). Marginal tests with sliced average variance estimation, Biometrika, 94, 285-296. https://doi.org/10.1093/biomet/asm021
- Stein CM (1981). Estimation of the mean of a multivariate normal distribution, Annals of Statistics, 9, 1135-1151. https://doi.org/10.1214/aos/1176345632
- Ye Z and Weiss RE (2003). Using the bootstrap to select one of a new class of dimension reduction methods, Journal of the American Statistical Association, 98, 968-979. https://doi.org/10.1198/016214503000000927
- Yin X and Cook RD (2002). Dimension reduction for the conditional kth moment in regression, Journal of Royal Statistical Society Series B, 64, 159-175. https://doi.org/10.1111/1467-9868.00330
- Yoo JK (2013a). Advances in seeded dimension reduction: bootstrap criteria and extensions, Computational Statistics & Data Analysis, 60, 70-79. https://doi.org/10.1016/j.csda.2012.10.003
- Yoo JK (2013b). Chi-squared tests in kth-moment sufficient dimension reduction, Journal of Statistical Computation and Simulation, 83, 191-201. https://doi.org/10.1080/00949655.2011.635304
- Yoo JK (2016). Tutorial: Dimension reduction in regression with a notion of sufficiency, Communications for Statistical Applications and Methods, 23, 93-103. https://doi.org/10.5351/CSAM.2016.23.2.093
피인용 문헌
- Dimension reduction for right-censored survival regression: transformation approach vol.23, pp.3, 2016, https://doi.org/10.5351/CSAM.2016.23.3.259
- Intensive numerical studies of optimal sufficient dimension reduction with singularity vol.24, pp.3, 2017, https://doi.org/10.5351/CSAM.2017.24.3.303