DOI QR코드

DOI QR Code

Afatinib Reduces STAT6 Signaling of Host ARPE-19 Cells Infected with Toxoplasma gondii

  • Yang, Zhaoshou (Department of Parasitology, College of Medicine, The Catholic University of Korea) ;
  • Ahn, Hye-Jin (Department of Parasitology, College of Medicine, The Catholic University of Korea) ;
  • Park, Young-Hoon (Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea) ;
  • Nam, Ho-Woo (Department of Parasitology, College of Medicine, The Catholic University of Korea)
  • Received : 2015.09.16
  • Accepted : 2015.11.07
  • Published : 2016.02.29

Abstract

Specific gene expressions of host cells by spontaneous STAT6 phosphorylation are major strategy for the survival of intracellular Toxoplasma gondii against parasiticidal events through STAT1 phosphorylation by infection provoked $IFN-{\gamma}$. We determined the effects of small molecules of tyrosine kinase inhibitors (TKIs) on the growth of T. gondii and on the relationship with STAT1 and STAT6 phosphorylation in ARPE-19 cells. We counted the number of T. gondii RH tachyzoites per parasitophorous vacuolar membrane (PVM) after treatment with TKIs at 12-hr intervals for 72 hr. The change of STAT6 phosphorylation was assessed via western blot and immunofluorescence assay. Among the tested TKIs, Afatinib (pan ErbB/EGFR inhibitor, $5{\mu}M$) inhibited 98.0% of the growth of T. gondii, which was comparable to pyrimethamine ($5{\mu}M$) at 96.9% and followed by Erlotinib (ErbB1/EGFR inhibitor, $20{\mu}M$) at 33.8% and Sunitinib (PDGFR or c-Kit inhibitor, $10{\mu}M$) at 21.3%. In the early stage of the infection (2, 4, and 8 hr after T. gondii challenge), Afatinib inhibited the phosphorylation of STAT6 in western blot and immunofluorescence assay. Both JAK1 and JAK3, the upper hierarchical kinases of cytokine signaling, were strongly phosphorylated at 2 hr and then disappeared entirely after 4 hr. Some TKIs, especially the EGFR inhibitors, might play an important role in the inhibition of intracellular replication of T. gondii through the inhibition of the direct phosphorylation of STAT6 by T. gondii.

Keywords

References

  1. Holland GN. Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 2003; 135: 973-988.
  2. Subauste CS, Ajzenberg D, Kijlstra A. Review of the series "Disease of the year 2011: toxoplasmosis" pathophysiology of toxoplasmosis. Ocul Immunol Inflamm 2011; 19: 297-306. https://doi.org/10.3109/09273948.2010.605198
  3. Tenter AMA, Heckeroth ARA, Weiss LML. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000; 30: 1217-1258. https://doi.org/10.1016/S0020-7519(00)00124-7
  4. McCannel CAC, Holland GNG, Helm CJC, Cornell PJ, Winston JV, Rimmer TG. Causes of uveitis in the general practice of ophthalmology. UCLA Community-Based Uveitis Study Group. Am J Ophthalmol 1996; 121: 35-46. https://doi.org/10.1016/S0002-9394(14)70532-X
  5. Holland GN, Lewis KG. An update on current practices in the management of ocular toxoplasmosis. Am J Ophthalmol 2002; 134: 102-114. https://doi.org/10.1016/S0002-9394(02)01526-X
  6. Silveira C, Belfort R, Muccioli C, Holland GN, Victora CG, Horta BL, Yu F, Nussenblatt RB. The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol 2002; 134: 41-46. https://doi.org/10.1016/S0002-9394(02)01527-1
  7. John DT, Petri WA (eds). The tissue coccidia: Toxoplasma gondii. Markell and Voge's Medical Parasitology (9th ed.). St. Louis, Missouri, USA. Sounders, Elsevier. 2006, pp. 139-149.
  8. Sharma R, Mathur MN. Stevens-Johnson syndrome following sulfadiazine, Tri-sulfose and sulfatriad therapy. J Assoc Physicians India 1965; 13: 727-730.
  9. Carrion-Carrion C, Morales-Suarez-Varela MM, Llopis-Gonzalez A. Fatal Stevens-Johnson syndrome in an AIDS patient treated with sulfadiazine. Ann Pharmacother 1999; 33: 379-380. https://doi.org/10.1345/aph.18068
  10. Hajj H, Lebrun M, Fourmaux MN, Vial H, Dubremetz JF. Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cell Microbiol 2007; 9: 54-64. https://doi.org/10.1111/j.1462-5822.2006.00767.x
  11. Hajj H, Demey E, Poncet J, Lebrun M, Wu B, Galeotti N, Fourmaux MN, Mercereau-Puijalon O, Vial H, Labesse G, Dubremetz JF. The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics 2006; 6: 5773-5784. https://doi.org/10.1002/pmic.200600187
  12. Ahn HJ, Kim JY, Nam HW. IL-4 independent nuclear translocalization of STAT6 in HeLa cells by entry of Toxoplasma gondii. Korean J Parasitol 2009; 47: 117-124. https://doi.org/10.3347/kjp.2009.47.2.117
  13. Ahn HJ, Cho PY, Ahn SK, Kim TS, Chong CK, Hong SJ, Cha SH, Nam HW. Seroprevalence of toxoplasmosis in the residents of Cheorwon-gun, Gangwon-do, Korea. Korean J Parasitol 2012; 50: 225-227. https://doi.org/10.3347/kjp.2012.50.3.225
  14. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009; 9: 28-39. https://doi.org/10.1038/nrc2559
  15. Cruzalegui F. Protein kinases: from targets to anti-cancer drugs. Ann Pharm Fr 2010; 68: 254-259. https://doi.org/10.1016/j.pharma.2010.03.007
  16. Sun K, Broms J, Lavander M, Gurram BK, Enquist PA, Andersson CD, Elofsson M, Sjostedt A. Screening for inhibition of the Vibrio cholera VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother 2014; 58: 4123-4130. https://doi.org/10.1128/AAC.02819-13
  17. Lepri S, Nannetti G, Muratore G, Cruciani G, Ruzziconi R, Mercorelli B, Palu G, Loregian A, Goracci L. Optimization of small molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds. J Med Chem 2014; 57: 4337-4350. https://doi.org/10.1021/jm500300r
  18. Qi WX, Shen Z, Lin F, Sun YJ, Min DL, Tang LN, He AN, Yao Y. Comparison of the efficacy and safety of EFGR tyrosine kinase inhibitor monotherapy with standard second-line chemotherapy in previously treated advanced non-small-cell lung cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev 2012; 13: 5177-5182. https://doi.org/10.7314/APJCP.2012.13.10.5177
  19. Bowles DW, Weickhardt A, Jimeno A. Afatinib for the treatment of patients with EGFR-positive non-small cell lung cancer. Drugs Today 2013; 49: 523-535. https://doi.org/10.1358/dot.2013.49.09.2016610
  20. Dranitsaris G, Schmitz S, Broom RJ. Small molecule targeted therapies for the second-line treatment for metastatic renal cell carcinoma: a systematic review and indirect comparison of safety and efficacy. J Cancer Res Clin Oncol 2013; 139: 1917-1926. https://doi.org/10.1007/s00432-013-1510-5
  21. Wei F, Wang W, Liu Q. Protein kinases of Toxoplasma gondii: functions and drug targets. Parasitol Res 2013; 112: 2121-2129. https://doi.org/10.1007/s00436-013-3451-y
  22. Caldas LA, de Souza W, Attias M. Calcium ionophore-induced egress of Toxoplasma gondii shortly after host cell invasion. Vet Parasitol 2007; 147: 210-220. https://doi.org/10.1016/j.vetpar.2007.05.012
  23. Ferreira S, De Carvalho TMU, De Souza W. Protein phosphorylation during the process of interaction of Toxoplasma gondii with host cells. J Submicrosc Cytol Pathol 2003; 35: 245-252.
  24. Caldas LA, Seabra SH, Attias M, de Souza W. The effect of kinase, actin, myosin and dynamin inhibitors on host cell egress by Toxoplasma gondii. Parasitol Int 2013; 62: 475-482. https://doi.org/10.1016/j.parint.2013.04.006
  25. Ahn HJ, Kim JY, Ryu KJ, Nam HW. STAT6 activation by Toxoplasma gondii infection induces the expression of Th2 C-C chemokine ligands and B clade serine protease inhibitors in macrophage. Parasitol Res 2009; 105: 1445-1453. https://doi.org/10.1007/s00436-009-1577-8
  26. Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity 2012; 36: 503-514. https://doi.org/10.1016/j.immuni.2012.03.013
  27. Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathway. Growth Factors 2012; 30: 88-106. https://doi.org/10.3109/08977194.2012.660936
  28. Laliberte J, Carruthers VB. Host cell manipulation by the human pathogen Toxoplasma gondii. Cell Mol Life Sci 2008; 65: 1900-1915. https://doi.org/10.1007/s00018-008-7556-x

Cited by

  1. Adverse Event Profile of Pyrimethamine-Based Therapy in Toxoplasmosis: A Systematic Review vol.17, pp.4, 2016, https://doi.org/10.1007/s40268-017-0206-8
  2. Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells vol.55, pp.5, 2016, https://doi.org/10.3347/kjp.2017.55.5.491