DOI QR코드

DOI QR Code

The New Phytoformula Containing Morus alba, Schizandra sinensis and Asparagus cochinchinensis Inhibits Lung Inflammation in vitro and in vivo

  • Jeong, Hyeon Gun (College of Pharmacy, Kangwon National University) ;
  • Lee, Chan Woo (College of Pharmacy, Kangwon National University) ;
  • Lee, Ju Hee (College of Pharmacy, Kangwon National University) ;
  • Kim, So Joong (College of Pharmacy, Kangwon National University) ;
  • Kwon, Yong Soo (College of Pharmacy, Kangwon National University) ;
  • Heo, Yisu (Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey) ;
  • Kim, Hyun Pyo (College of Pharmacy, Kangwon National University)
  • Received : 2015.07.27
  • Accepted : 2015.12.02
  • Published : 2016.03.31

Abstract

A phytoformula containing the root barks of Morus alba, the fructus of Schizandra sinensis and the roots of Asparagus cochinchinensis (MSA) was prepared as a potential new herbal remedy, and its therapeutic potential for alleviating inflammatory lung conditions was examined. For in vivo evaluation, an animal model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice was used. With oral administration of 6 - 60 mg/kg, MSA potently and dose-dependently inhibited bronchitis-like symptoms in acute lung injury induced by intranasal treatment of LPS as judged by the number of cells in the bronchoalveolar lavage fluid (BALF) and histological observation. The inhibitory potency was comparable with that of dexamethasone. For in vitro assay, the effects on the production of proinflammatory molecules in lung epithelial cells and alveolar macrophages were examined. Although MSA inhibited IL-6 production in IL-$1{\beta}$-treated lung epithelial cells (A549) only at a high concentration ($300{\mu}g/ml$), the formula strongly and concentration-dependently inhibited NO production in LPS-treated alveolar macrophages (MH-S) at $20-300{\mu}g/ml$. Based on all of these findings, the new phytoformula MSA is suggested to have the potential to control inflammatory lung diseases including bronchitis, at least in part, by inhibiting inducible nitric oxide synthase-catalyzed NO production.

Keywords

References

  1. Jeffery, P. K. Am. J. Respir. Crit. Care Med. 2001, 164, S28-S38. https://doi.org/10.1164/ajrccm.164.supplement_2.2106061
  2. Barnes, P. J. Clin. Chest Med. 2014, 35, 71-86. https://doi.org/10.1016/j.ccm.2013.10.004
  3. Bae, K. The medicinal plants of Korea; Kyo-Hak Pub. Co.; Korea, 2000, p 73.
  4. Hong, C. H.; Hur, S. K.; Oh, O. J.; Kim, S. S.; Nam, K. A; Lee, S. K. J. Ethnopharmacol. 2002, 83, 153-159. https://doi.org/10.1016/S0378-8741(02)00205-2
  5. Chao, W. W.; Kuo, Y. H.; Li, W. C.; Lin, B. F. J. Ethnopharmacol. 2009, 122, 68-75. https://doi.org/10.1016/j.jep.2008.11.029
  6. Cheon, B. S.; Kim, Y. H.; Son, K. S.; Chang, H. W.; Kang, S. S.; Kim, H. P. Planta Med. 2000, 66, 596-600. https://doi.org/10.1055/s-2000-8621
  7. Yang, Z. G.; Matsuzaki, K.; Takamatsu, S.; Kitanaka, S. Molecules 2011, 16, 6010-6022. https://doi.org/10.3390/molecules16076010
  8. Lim, H. J.; Jin, H. G.; Woo, E. R.; Lee, S. K.; Kim, H. P. J. Ethnopharmacol. 2013, 149, 169-175. https://doi.org/10.1016/j.jep.2013.06.017
  9. Bae, K. The medicinal plants of Korea; Kyo-Hak Pub. Co.; Korea, 2000, p 116.
  10. Lim, H.; Son, K. H.; Bae, K. H.; Hung, T. M.; Kim, Y. S.; Kim, H. P. Phytother. Res. 2009, 23, 1489-1492. https://doi.org/10.1002/ptr.2783
  11. Kim, H.; Ahn, Y. T.; Kim, Y. S.; Cho, S. I.; An, W. G. Pharmacogn. Mag. 2014, 10, S80-S85. https://doi.org/10.4103/0973-1296.127348
  12. Bae, H.; Kim, R.; Kim, Y.; Lee, E.; Kim, H. J.; Jang, Y. P.; Jung, S. K.; Kim, J. J. Ethnopharmacol. 2012, 142, 41-47. https://doi.org/10.1016/j.jep.2012.04.009
  13. Lee, H. J.; Park, J. S.; Yoon, Y. P.; Shin, Y. J.; Lee, S. K.; Kim, Y. S.; Hong, J. H.; Son, K. H.; Lee, C. J. Phytomedicine 2015, 22, 568-572. https://doi.org/10.1016/j.phymed.2015.03.009
  14. Lee, J. H.; Lim, H. J.; Lee, C. W.; Son, K. H.; Son, J. K.; Lee, S. K.; Kim, H. P. Evid. Based Complement Alternat. Med. 2015, doi: 10.1155/2015/640846.
  15. Mosmann, T. J. Immunol. Methods 1983, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  16. Ko, H. J.; Jin, J. H.; Kwon, O. S.; Kim, J. T.; Son, K. H.; Kim, H. P. Biomol. Ther. 2011, 19, 324-330. https://doi.org/10.4062/biomolther.2011.19.3.324
  17. Nomura, T. Yakugaku Zasshi 2001, 121, 535-556. https://doi.org/10.1248/yakushi.121.535
  18. Zhu, L.; Li, B.; Liu, X.; Huang, G.; Meng, X. Food Chem. 2015, 186, 146-152. https://doi.org/10.1016/j.foodchem.2014.09.008
  19. Kim, S. Y.; Son, K. H.; Chang, H. W.; Kang, S. S.; Kim, H. P. Arch. Pharm. Res. 1999, 22, 313-316. https://doi.org/10.1007/BF02976370
  20. Guo, R.; Pittler, M. H.; Ernst, E. Eur. Respir. J. 2006, 28, 330-338. https://doi.org/10.1183/09031936.06.00119905
  21. Sharma, M.; Arnason, J. T.; Burt, A.; Hudson, J. B. Phytother. Res. 2006, 20, 147-152. https://doi.org/10.1002/ptr.1824
  22. Agbabiaka, T. B.; Guo, R.; Ernst, E. Phytomedicine 2008, 15, 378-385. https://doi.org/10.1016/j.phymed.2007.11.023
  23. Matthys, H.; Funk, P. Planta Med. 2008, 74, 686-692. https://doi.org/10.1055/s-2008-1074519

Cited by

  1. Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria vol.27, pp.4, 2016, https://doi.org/10.4014/jmb.1611.11051