Acknowledgement
Supported by : Gangneung-Wonju National University
References
- E. Dubouis, Solution of a problem of a J. Tannery, Intermediaire Math. 18 (1911), 55-56.
- E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, (1985).
-
B. M. Kim, On nonvanishing sum of integral squares of
$\mathbb{Q}(\sqrt{5})$ , Kangweon-Kyungki Math. J. 6 (1998), 299-302. -
B. M. Kim, On nonvanishing sum of integral squares of
$\mathbb{Q}(\sqrt{2})$ and$\mathbb{Q}(\sqrt{3})$ , J . Nat. Sci. Res. Inst. KANU 14 (1998), 1-5. - B. M. Kim, Sums of Squares of Integers not less than 2, The Journal of Natural Science, GWNU 18 (2012), 31-37.
- B. M. Kim, J. Y. Kim, Sums of nonvanishing integral squares in real quadratic fields, preprint.
- E. S. Selmer, On Waring's problem for squares, Acta Arith. 48 (1987), 373-377. https://doi.org/10.4064/aa-48-4-373-377
Cited by
- A sum of three nonzero triangular numbers vol.17, pp.10, 2016, https://doi.org/10.1142/s1793042121500883