DOI QR코드

DOI QR Code

RIESZ PROJECTIONS FOR A NON-HYPONORMAL OPERATOR

  • Lee, Jae Won (Department of Applied Mathematics Kumoh National Institute of Technology) ;
  • Jeon, In Ho (Department of Mathematics Education Seoul National University of Education)
  • Received : 2016.02.06
  • Accepted : 2016.02.29
  • Published : 2016.03.30

Abstract

J. G. Stampfli proved that if a bounded linear operator T on a Hilbert space ${\mathfrak{H}}$ satisfies ($G_1$) property, then the Riesz projection $P_{\lambda}$ associated with ${\lambda}{\in}iso{\sigma}$(T) is self-adjoint and $P_{\lambda}{\mathfrak{H}}=(T-{\lambda})^{-1}(0)=(T^*-{\bar{\lambda}})^{-1}(0)$. In this note we show that Stampfli''s result is generalized to an nilpotent extension of an operator having ($G_1$) property.

Keywords

References

  1. M. Cho and K. Tanahashi, Isolated points of the spectrum of p-hyponormal and log-hyponormal operators, Integr. Equat. Oper. Th. 43 (2002), 379-384. https://doi.org/10.1007/BF01212700
  2. B. P. Duggal, Riesz projections for a class of Hilbert space operators, Linear Algebra Appl. 407 (2005), 140-148. https://doi.org/10.1016/j.laa.2005.04.021
  3. B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203-217.
  4. Y. M. Han and A.-H. Kim, A note on *-paranormal operators, Integr. Equat. Oper. Th. 49 (2004), 435-444.
  5. J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 ${\times}$2 upper triangular operator matrices, Proc. Amer. Math. soc. 128 (2000), 119-123. https://doi.org/10.1090/S0002-9939-99-04965-5
  6. Y. M. Han, J. I. Lee and D. Wang, Riesz idempotents and Weyl's theorem for w-hyponormal operators, Integr. Equat. Oper. Th. 53 (2005), 51-60. https://doi.org/10.1007/s00020-003-1313-1
  7. H. G. Heuser, Functional Analysis, John Wiley, New York, 1982.
  8. M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. https://doi.org/10.1017/S0017089500006807
  9. M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math. 163(2004) 85-101. https://doi.org/10.4064/sm163-1-5
  10. C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. soc. 117 (1993), 715-719. https://doi.org/10.1090/S0002-9939-1993-1111438-8
  11. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458. https://doi.org/10.2140/pjm.1962.12.1453
  12. J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. https://doi.org/10.1090/S0002-9947-1965-0173161-3
  13. A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integr. Equat. Oper. Th. 55 (2006), 145-151. https://doi.org/10.1007/s00020-005-1386-0