
 

www.kips.or.kr                                                                                                  Copyright© 2016 KIPS 

       
 
         

 
 
 

An Experimental Implementation of a Cross-Layer 
Approach for Improving TCP Performance over  

Cognitive Radio Networks  
 

Sang-Seon Byun* 
 
 
Abstract 
In cognitive radio networks (CRNs), the performance of the transmission control protocol (TCP) at the 
secondary user (SU) severely drops due to the mistrigger of congestion control. A long disruption is caused by 
the transmission of primary user, leading to the mistrigger. In this paper, we propose a cross-layer approach, 
called a CR-aware scheme that enhances TCP performance at the SU. The scheme is a sender side addition to 
the standard TCP (i.e., TCP-NewReno), and utilizes an explicit cross-layer signal delivered from a physical (or 
link) layer and the signal gives an indication of detecting the primary transmission (i.e., transmission of the 
primary user). We evaluated our scheme by implementing it onto a software radio platform, the Universal 
Software Radio Peripheral (USRP), where many parts of lower layer operations (i.e., operations in a link or 
physical layer) run as user processes. In our implementation, we ran our CR-aware scheme over IEEE 
802.15.4. Furthermore, for the purpose of comparison, we implemented a selective ACK-based local recovery 
scheme that helps TCP isolate congestive loss from a random loss in a wireless section. 
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1. Introduction 

Ten years has passed since the concept of a cognitive radio network (CRN) [1] was proposed in order 
to solve the problem of inefficient spectrum utilization. In CRNs, while primary users (PUs) are 
licensed to access some frequency bands that are inactive, secondary users (SUs) are allowed to transmit 
over these frequency bands. To this end, SUs should be equipped with a cognitive radio (CR) capability 
that can sense and occupy an unused spectrum, and release it when the PU that is licensed to access the 
spectrum starts its transmission.  

The majority of the research work related to CRNs have focused on the issues in physical or link layers 
(i.e., spectrum sensing, dynamic spectrum allocation, interference control, etc.).  Issariyakul et al. [2] 
studied the performance degradation of a transmission control protocol (TCP) in overlay CRNs (In 
overlay CRNs, SUs can access the portion of the spectrum that is not used by any PUs. As a result, there is 
virtually no interference with the PUs. Henceforth, CRN implies an overlay CRN in this paper) where an 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received September 17, 2014; accepted January 21, 2015; onlinefirst December 11, 2015. 
Corresponding Author: Sang-Seon Byun (ssbyun@cup.ac.kr) 
* Dept. of Computer Engineering, Catholic University of Pusan, Busan, Korea (ssbyun@cup.ac.kr) 

J Inf Process Syst, Vol.12, No.1, pp.73~82, March 2016 ISSN 1976-913X (Print) 
http://dx.doi.org/10.3745/JIPS.03.0041 ISSN 2092-805X (Electronic) 



An Experimental Implementation of a Cross-Layer Approach for Improving TCP Performance over Cognitive Radio Networks 

 

74 | J Inf Process Syst, Vol.12, No.1, pp.73~82, March 2016 

SU’s transmission is entirely disrupted whenever a PU starts its transmission until the SU handoffs to 
other unused spectrum or when the PU finishes the transmission. In this situation, the SU’s TCP suffers 
from a severe performance drop due to a long round-trip time (RTT) and consecutive retransmission 
timeouts (RTOs). Especially, the consecutive RTOs continuously hinder the progress of the congestion 
window since the congestion window always squeezes to 1 on every RTO. Furthermore, the retransmission 
timer (RT) is backed off exponentially in the standard TCP (i.e., TCP-NewReno) on every RTO.  

In this paper, we propose a cross-layer scheme that resolves the above-mentioned performance 
degradation in overlay CRNs. Our scheme is only implemented at the secondary transmitter (ST) and 
does not require any changes at the secondary receiver (SR). We let the lower layer protocol send the 
overlying TCP an explicit signal indicating the start and stop of the PU’s transmission. Then, we 
modified the TCP-NewReno so that the TCP stops its transmission after saving its current sending state 
upon receiving the signal indicating the start of the PU’s transmission, and resumes transmitting upon 
receiving the signal indicating that the PU has stopped transmitting.  

We evaluated our scheme by implementing it on a software-defined radio platform, the Universal 
Software Radio Peripheral (USRP). We also measured the performance gain when our scheme is 
assisted by a link-layer loss recovery scheme, that is, link-layer selective-ACK. 

The rest of this paper is organized as follows: in Section 2, we presented the problems that the TCP 
has over CRNs and other related research efforts. In Section 3, we present our scheme of a CR-aware 
TCP via a cross-layer approach. In Section 4, we give the implementation details. In Section 5, we 
present the results of the evaluations. Finally, we conclude this paper in Section 6. 

 
 

2. TCP over CRNs 

2.1 TCP over Wireless Networks 
 
In the Internet, the TCP provides the application with reliable and ordered packet delivery over 

unreliable physical media. Therefore, TCP is the most widely used transport layer protocol even in 
wireless networks, and there is no sign of change occurring in the foreseeable future.  

The most popular TCP variant (i.e., TCP-NewReno [3]) regards packet loss as the signal of network 
congestion. Two different signals are used for noticing the packet loss, namely, triple duplicate 
acknowledgements (ACKs), and RTOs. Upon receiving triple duplicate ACKs, the TCP performs a fast 
retransmission and triggers a congestion avoidance mechanism by halving its congestion window size 
(henceforth, we denote the congestion window size as cwnd). On the occurrence of an RTO, it 
retransmits the unacknowledged packet. At the same time, it reduces the cwnd to 1 and triggers the slow 
start deeming the network overloaded. 

There has been extensive research on resolving the problem of a standard TCP over wireless 
networks; multiple random packet losses within one RTT, due to interference, shadowing, fading, and 
contention in wireless channels and other factors (such as buffer overflow in the NIC (network interface 
card), lead to consecutive RTOs and an exponential back-off of the RT. Therefore, the standard TCP 
suffers from a drastic decrease of its throughput [4]. The main ideas behind the schemes that tackle the 
above-mentioned problem are 1) to reduce the impact of random packet loss on the TCP by local 
recovery and 2) to differentiate between random packet loss and congestive packet loss. 
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2.2 Cross-Layer Implementation 
 
Unlike legacy-layered approaches, the cross-layer technique allows higher layer protocols to react 

more adaptively and agilely to changes in lower layers. In a similar way, lower layers are able to adjust 
their parameters using the information given by higher layers. For instance, in CRNs, the TCP in the SU 
side can respond more agilely to channel availability and capacity via cross-layer signaling from the 
physical layer and the physical layer adjusts the modulation and coding/decoding methods for 
providing the TCP with better goodput. 

Recently, a few approaches [5-8] have been proposed for improving TCP performance in CRNs 
through cross-layering. However, all of them are evaluated via simulations with somewhat optimistic 
and convenient assumptions. For instance, perfect knowledge on the channel state [5], error-free 
control channel [7,8], statistical knowledge on the behavior of PU’s transmission [6-8] and static 
channel gain during a single RTT [5]. For all of that, it is still challenging to implement cross-layer 
schemes in general computer systems since it is inevitable to manipulate the TCP stack and device 
driver in an operating system. In [9,10], the authors have implemented cross-layer approaches to 
improve TCP performance over multi-hop networks and their approaches were implemented in the 
Linux kernel and MadWiFi driver.  

Lately, several software-defined radio (SDR)-based experimental platforms and testbeds for CRNs 
have shown up in the research field, and have been paid attention to by researchers as well as 
practitioners. In [11,12], the authors have reviewed the most popular SDR platforms and introduced 
exemplary CRNs. Mainly, those SDR-based platforms are designed to carry out the majority of lower 
layer operations in software with minimal hardware RF front-end. Hence, it is possible to achieve 
cross-layer implementation on these platforms more conveniently since lower layers, as well as the 
TCP, can be implemented as user processes, which enables the easy implementation of cross-layer 
signaling. 

In this paper, we propose a cross-layer scheme that enhances TCP performance over CRNs, and 
provide a practical implementation on an SDR platform, the USRP. In USRP, the main signal 
processing blocks are implemented with C++ and their flow graphs are designed with Python. In our 
implementation, we utilized 802.15.4 implementation [13] as a lower layer wireless standard. Then we 
implemented a standard TCP (i.e., TCP-NewReno) and our enhancement scheme, and coupled them 
with the 802.15.4 implementation. Additionally, we implemented a link layer recovery scheme 
(henceforth, referred to as the LR scheme) that improves TCP performance against random packet loss. 

The main reason of choosing IEEE 802.15.4 as the target lower layer is that, at first, it works perfectly 
on our software radio platform (USRP E100), and there are many issues related to the coexistence of 
IEEE 802.15.4 with other major protocols operating on unlicensed 2.4 GHz ISM band, notably IEEE 
802.11 (WLAN) and IEEE 802.15.1 (Bluetooth) [14-16]. Furthermore, it is not unusual to address 
reliable data transmission on IP-enabled small devices that use IEEE 802.15.4 [17-20]. 

 
 

3. CR-Aware TCP via Cross-Layer Approach 

In CRNs, the standard TCP at the SU side suffers from the performance degradation due to not only 
the random packet loss but also unavailable channel access; SU’s transmission is disrupted by the PU’s 
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transmission if both the SU and PU access the same channel. However, the standard TCP refers the 
disruption to the signal of network congestion. Furthermore, the random loss occurs transiently while 
the disruption by the PU’s transmission lasts for a long while. Therefore, unless the SU handoffs to 
other unused spectrums, the disruption incurs more consecutive RTOs and an exponential back-off of 
the RT. In detail, if the disruption incurs RTO at the SU, and if it continues until the next RT expires, 
the RT is backed off exponentially twice. Thus, it is highly probable that the SU does not proceed with 
its transmission even after the disruption is over. Our experimental results show that TCP performance 
is deteriorated more severely by the disruption than the random loss. 

We consider an overlay CRN with a single frequency band in this paper. The physical layer in the SU 
side should have the capability of detecting the PU’s transmission, and should cease with its 
transmission upon the detection in order not to interfere with the PU’s transmission. In this situation, 
we envisaged a cross-layer signal that indicates the detection of the PU’s transmission. This cross-layer 
signal is delivered to the CR-aware module that is a sender side addition to a standard TCP. We call our 
standard TCP equipped with the CR-aware capability, CR-aware TCP. Our scheme requires no 
modifications at the receiver side.  

 

 
Fig. 1. Illustration of the cross-layer signaling with CR-aware TCP. 

 
The brief behavior of the CR-aware TCP is presented as (also refer to Fig. 1): 
1) When the physical layer at the SU detects the PU’s transmission, it gives the explicit cross-layer 

signal to the TCP layer. 
2) Upon receiving the cross-layer signal, the TCP layer cancels the RTO and freezes its cwnd and RT 

value. 
3) The SU periodically overhears the channel in order to detect whether the PU is still transmitting or 

not. 
4) If no transmission is detected for a certain predefined duration (henceforth, we denote this 

duration as Tidle), the physical layer delivers the cross-layer signal to the TCP. 
5) On receiving the cross-layer signal, the TCP layer resets the RTO with the frozen RT value, and 

resumes transmission with restoring the frozen cwnd. 
 
Even though the secondary receiver receives packets successfully, acknowledgements can be lost by 

the disruption. In this case, the SU’s transmission is delayed until the next RTO, even after the 
disruption ends since only an outstanding acknowledgement can increase the cwnd. In order to avoid 
this situation, the CR-aware TCP immediately retransmits packet whose acknowledgment is pending. 
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4. Implementation Details 

4.1 The Platform 
 
We implemented our CR-aware TCP on USRP E100, which is a standalone version of USRPs, and its 

main hardware consists of a TI OMAP Beagle Board and ARM cortex A8 core. It can hold one RF 
daughter board that plays the role of the RF front-end. Besides, it holds one FPGA chip where the 
DAC/ADC and interpolator/decimator are installed, and its default operating system is an embedded 
Linux. 

GNURadio and the USRP Hardware Driver (UHD) are widely used radio software for USRP. 
GNURadio is an open source project (http://www.gnuradio.org), and supports hardware-independent 
signal processing functionalities. In GNURadio, signal-processing blocks are written in C++, while 
signal flow interfaces are built using Python. UHD, which was developed by Ettus Research LLC (the 
manufacturer of the USRP), can work with or replace GNURadio, and its signal processing blocks are 
exclusively optimized for USRP.  

In USRP, most of the signal-processing operations are executed on a general-purpose processor 
(GPP). Therefore, its performance is much worse than a general radio system where all the signal-
processing operations are handled by dedicated DSPs. However, this device sufficiently fits the purpose 
of evaluating prototypical protocols. 

 

 
Fig. 2.  Experimental topology. 

 
As shown in Fig. 2, we configured experimental topology deploying three USRPs: one for a ST, 

another for a PU, and the other for a base station (BS). We let the ST and the BS communicate through 
802.15.4 with each other, and the BS communicate with the SR through the IP raw socket over the 
Ethernet since USRP E100 supports Ethernet connection as well. In order to minimize the congestive 
loss in the wired path, we located both the SR and BS in the same subnet. 
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4.2 Implementation of CR-Aware TCP 
 
Like other software radio modules implemented for USRP, the 802.15.4 implementation is written in 

C++ and Python for main blocks and block interfacing, respectively, and runs in a user space as a single 
Python process. We added the Python code, which implements the functionality of detecting and 
signaling the start and end of PU’s transmission to the 802.15.4 implementation. Additionally, we made 
the PU perform its transmission using 802.15.4 just as the ST does. Then, by letting the ST know the 
hardware address of the PU in advance, the ST can detect the PU’s transmission simply by decoding the 
address field of incoming 802.15.4 frames. By doing this, we made it possible for the performance of the 
TCP to not be affected by the performance of the spectrum sensing mechanism. 

At first, we implemented TCP-NewReno in C and added the code of the CR-aware scheme. Our TCP 
implementation also runs in a user space as a single process. For inter-process communication (IPC) 
between the TCP process and the Python process (i.e., for the deliveries of user data, 
acknowledgements, and cross-layer signals), we used the Unix Domain Socket. We did not implement a 
flow control mechanism and IP layer for removing the factors that might influence the performance of 
the congestion control algorithm. Furthermore, we let the TCP process itself generate user data. 

Furthermore, we implemented a selective ACK (SACK)-based LR scheme [21] for improving TCP 
performance against random loss. Each SACK contains information about up to three non-contiguous 
data blocks that have been received successfully by the receiver and its starting and ending sequence 
number describe each block of data. In our implementation, the 802.15.4 module in the BS snoops the 
sequence number of incoming TCP packets and transmits the SACK to the ST whenever it detects a 
packet loss. On receiving the SACK, the ST immediately retransmits packets marked as ‘lost’ in the 
SACK.  

In this paper, we envisage two different implementations of the SACK-based LR scheme according to 
layers where the retransmission function is implemented. For the following general SACK-based LR 
scheme, a retransmission function can be added in 802.15.4 implementation (henceforth, we call this 
LR scheme PHY-LR). It is also possible to provide TCP implementation with a retransmission function 
(henceforth, we call this LR scheme TCP-LR) and we only implemented the retransmission module in 
the TCP. The PHY-LR scheme is preferred in terms of fast responsiveness, and the TCP-LR scheme is 
preferred in terms of less buffer usage since it shares the buffer with a standard TCP. 

 
 

5. Performance Evaluations 

5.1 Platform Settings 
 
We located the USRP of the ST and the USRP of the BS around seven meters away from each other. 

Moreover, in order to degrade the channel state moderately, we put them out of the line of sight. Then 
we located the USRP of the PU 5 m away from the ST, but in the line of sight. We let all the USRPs 
transmit with fixed transmission power, that is, 1 dB. All of the USRPs were allocated with 2 Mbps of 
the physical bandwidth and 200 kbps of the sampling rate. We let all of the transmissions perform over 
the central frequency of 2.1 GHz.  

The size of MAC protocol data unit (MPDU) is given as 128 bytes, including 19 bytes of header and 2 
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bytes of tail. Therefore, 107 bytes are reserved for the payload. We allocated 12 bytes for the header of 
our TCP implementation and 4 bytes and 8 bytes for the sequence number and RTT, respectively. 
Therefore, each MDPU can carry 95 bytes of user data. 

We let the PU generate 802.15.4 packets for an exponentially distributed time with the mean of 4 
seconds, and ceased transmission for an exponentially distributed time with the mean of 4 seconds. We 
let Tidle = 1 s. If no transmission from the PU is overheard for at least 1 second, the ST resumes 
transmission. 

 

 

 

 
Fig. 3. Comparison of the goodput measured in each TCP implementation. (a) TCP-NewReno, (b) PHY- 
LR scheme, and (c) TCP-LR scheme. 
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We evaluated the performance of our CR-aware scheme over three different TCP implementations: 
TCP-NewReno, PHY-LR scheme, and TCP-LR scheme. The performance of each implementation was 
measured for 600 seconds. 

 

 
Fig. 4. Trace of the packet sequence. 

 
First, we plotted the goodput of each TCP implementation in Fig. 3. As shown in these graphs, it is 

observed that significantly better goodput is achieved on every TCP implementation when the CR-
aware scheme is deployed together. Especially, we noted that the TCP-NewReno and PHY-LR scheme, 
where no CR-aware scheme is used, yield very poor performance. Over the course of 600 seconds, they 
only succeeded in delivering 26 packets (TCP-NewReno) and 163 packets (PHY-LR scheme), 
respectively. As described earlier, this is due to the fact that TCP-implementations with no CR-aware 
scheme continue to transmit or retransmit the user data, even though the physical channel is blocked. 
As a result, they trigger consecutive RTOs (with squeezing cwnd to 1) and postpone the transmission 
until the next RTO, even when the channel becomes available for transmission.  

We also observed that all LR schemes, even with a CR-aware scheme, trigger RTOs frequently, which 
results from the loss of feedback packets (i.e., SACK or TCP acknowledgement), as well as the loss of 
retransmitted packets. Furthermore, it has been observed that the TCP-LR scheme (with no CR-aware 
function) yields better goodput than other schemes with no CR-aware scheme. This is due to the fast 
retransmission of packets marked as ‘lost’ in SACKs whenever the RTO is triggered. In the 
implementation of the TCP-LR scheme, we let all lost packets—indicated by SACK and TCP 
acknowledgment—be retransmitted on every RTO. Finally, we observed poor goodput over all the TCP 
implementations (at most up to 780 kB/s). This is, as we previously mentioned, due to the poor 
performance of the USRP.  

In order to study the contribution of a CR-aware scheme to TCP performance more clearly, we traced 
the packet sequence of each implementation and plotted it in Fig. 4. We did not plot the trace for the 
TCP-NewReno with any CR-aware scheme since its trace cannot be discerned on the graph, due to its 
poor performance. As shown in the graph, the TCP-LR with the CR-aware scheme yields the best 
performance, and the PHY-LR with the CR-aware scheme achieves the second best performance. It is 
also worth addressing that the TCP-NewReno with the CR-aware scheme slightly outperforms the 
TCP-LR (with no CR-aware scheme), which implies disruption. This is due to the PU’s transmission 
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that makes the TCP perform more poorly performance poorer  than random packet loss does (This is 
also dependent on the frequency and duration of the PU’s transmission). Therefore, it is necessary to 
consider the disruption that occurs due to  the PU’s transmission when designing the TCP over CRNs. 

 
 

6. Concluding Remarks 

In this paper, we considered a cross-layer approach to enhance the TCP performance of the SU in 
CRNs. We provided cross-layer signals between the physical layer and the TCP. The signals indicate the 
start or stop of the PU’s transmission. Upon receiving the cross-layer signal indicating the start of the 
PU’s transmission, the CR-aware TCP freezes its RTO and cwnd, and stops the transmission. Right after 
the signal is given that the PU has stopped transmitting, the CR-aware TCP resumes the transmission 
by restoring the frozen RTO and cwnd. We implemented our cross-layer scheme on an SDR platform, 
USRP, where lower layer protocols and the TCP are implemented using high-level programming 
languages (i.e., C/C++ and Python) and are run as user processes. Therefore, the cross-layering can be 
realized by simply providing an IPC mechanism. Furthermore, we implemented a selective ACK-based 
LR-scheme to enhance the performance over a random loss in a wireless channel. We deployed the 
802.15.4 implementation as a lower layer protocol. After a series of experiments, we reached the 
conclusion that in CRNs it is essential to design the TCP at the SU side by giving more consideration to 
the impact of the PU’s transmission than to the impact of random loss. 
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