References
- M. Rezaei, S. H. Tabaian, and D. F. Haghshenas, "Electrochemical nucleation of palladium on graphene: A kinetic study with an emphasis on hydrogen co-reduction", Electrochim. Acta, 87, 381 (2013). https://doi.org/10.1016/j.electacta.2012.09.092
- X. F. Wu, P. Anbarasan, H. Neumann, and M. Beller, "From noble metal to nobel prize: palladium-catalyzed coupling reactions as key methods in organic synthesis", Angew. Chem. Int. Ed., 49, 9047 (2010). https://doi.org/10.1002/anie.201006374
- E. I. Negishi, "Palladium-or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation", Acc. Chem. Res., 15, 340 (1982). https://doi.org/10.1021/ar00083a001
- G. Wang, Jintao Bai, Y. Wang, Z. Ren, and Jinbo Bai, "Prepartion and electrochemical performance of a cerium oxidegraphene nanocomposite as the anode material of a lithium ion battery", Scripta Mater., 65, 339 (2011). https://doi.org/10.1016/j.scriptamat.2011.05.001
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonons, I. V. Grigorieva, and A. A. Firson, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
- H. Gao, F. Xiao, C. B. Ching, and H. Duan, "One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection", Appl. Mater. Interfaces, 3, 3049 (2011). https://doi.org/10.1021/am200563f
- M. Zhu, P. Chen, and M. Liu, "Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocomposite as a highly efficiedt visible-light plasmonic photocatalyst", ACS Nano, 5, 4529 (2011). https://doi.org/10.1021/nn200088x
- W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, and S. Liu, "Synthesis of Au nanoparticles decorated graphene oxide nanosheets: nancovalent functionalization by tween 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol", J. Hazard. Mater., 197, 320 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.092
- Y. Li, Y. Yu, J. G. Wang, J. Song, Q. Li, M. Dong, and C. Liu, "CO oxidation over graphene supported palladium catalyst", Appl. Catal. B-Environ., 125, 189 (2012). https://doi.org/10.1016/j.apcatb.2012.05.023
-
X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, and H. Zhang, "In situ chemical synthesis of
$SnO_2$ -graphene nanocomposite as anode materials for lithium-ion batteries", J. Phys. Chem. C., 113, 10842 (2009). https://doi.org/10.1021/jp903821n - F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, and H. Y. Chen, "Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing", Electrochem. Commun., 14, 59 (2012). https://doi.org/10.1016/j.elecom.2011.11.004
- C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
-
L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, and B. Liu, "Controlled synthesis of
$CeO_2$ /graphene nanocomposites with highly enhanced optical and catalytic properties", J. Phys. Chem. C., 116, 11741 (2012). https://doi.org/10.1021/jp3015113 - N. R. Wilson, P. A. Pandey, R. Bleanland, R. G. Young, I. A. Kinloch, L. Gong, K. Suenag, J. P. Rourke, and J. Sloan, "Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy", ACS Nano, 3, 2547 (2009). https://doi.org/10.1021/nn900694t
- C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial", Angew. Chem., Int. Ed., 48, 7752 (2009). https://doi.org/10.1002/anie.200901678
- Akhavan, "Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol", Carbon, 49, 11 (2011). https://doi.org/10.1016/j.carbon.2010.08.030
- M. G. Chung, D. H. Kim, D. K. Seo, T. W. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, and Y. H. Kim, "Flexible hydrogen sensors using graphene with palladium nanoparticle decoration", Sensors Actuat. B-Chem., 169, 387 (2012). https://doi.org/10.1016/j.snb.2012.05.031
-
J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, "Hierarchically Ordered Macro-Mesoporous
$TiO_2$ -Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities", ACS Nano, 5, 590 (2011). https://doi.org/10.1021/nn102767d -
Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, and T. Regier, "
$Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction", Nat. Mater., 10, 780 (2011). https://doi.org/10.1038/nmat3087 -
Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, and H. M. Cheng, "High-energy
$MnO_2$ nanowire/graphene and graphene asymmetric electrochemical capacitors", ACS Nano, 10, 5835 (2010). - M. D. Dios, V. Salgueirino, M. P. Lorenzo, and M. A. C. Duarte, "Synthesis of carbon nanotube-inorganic hybrid nanocomposites: an instructional experiment in nanomaterials chemistry", J. Chem. Educ., 89, 280 (2012). https://doi.org/10.1021/ed101130n