DOI QR코드

DOI QR Code

Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes

  • Kim, Jae Jin (Department of Chemistry, Sahmyook University) ;
  • Ko, Weon Bae (Department of Chemistry, Sahmyook University)
  • Received : 2015.10.28
  • Accepted : 2015.09.23
  • Published : 2016.03.31

Abstract

Nanosized palladium particles were synthesized using palladium(II) chloride, trisodium citrate dihydrate, and sodium borohydride under stirring condition. Nanosized palladium-graphene composites were prepared from palladium nanoparticles, and graphene was enclosed with polyallylamine under stirring condition for 1 h followed by ultrasonication for 3 h. Nanosized palladium-graphene composites were heated in an electric furnace at $700^{\circ}C$ for 2 h and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectrophotometry was used to evaluate the nanosized palladium-graphene composites as a catalyst in the photocatalytic degradation of various organic dyes such as methylene blue, methyl orange, rhodamine B, and brilliant green under ultraviolet light at 254 nm.

Keywords

References

  1. M. Rezaei, S. H. Tabaian, and D. F. Haghshenas, "Electrochemical nucleation of palladium on graphene: A kinetic study with an emphasis on hydrogen co-reduction", Electrochim. Acta, 87, 381 (2013). https://doi.org/10.1016/j.electacta.2012.09.092
  2. X. F. Wu, P. Anbarasan, H. Neumann, and M. Beller, "From noble metal to nobel prize: palladium-catalyzed coupling reactions as key methods in organic synthesis", Angew. Chem. Int. Ed., 49, 9047 (2010). https://doi.org/10.1002/anie.201006374
  3. E. I. Negishi, "Palladium-or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation", Acc. Chem. Res., 15, 340 (1982). https://doi.org/10.1021/ar00083a001
  4. G. Wang, Jintao Bai, Y. Wang, Z. Ren, and Jinbo Bai, "Prepartion and electrochemical performance of a cerium oxidegraphene nanocomposite as the anode material of a lithium ion battery", Scripta Mater., 65, 339 (2011). https://doi.org/10.1016/j.scriptamat.2011.05.001
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonons, I. V. Grigorieva, and A. A. Firson, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  6. H. Gao, F. Xiao, C. B. Ching, and H. Duan, "One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection", Appl. Mater. Interfaces, 3, 3049 (2011). https://doi.org/10.1021/am200563f
  7. M. Zhu, P. Chen, and M. Liu, "Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocomposite as a highly efficiedt visible-light plasmonic photocatalyst", ACS Nano, 5, 4529 (2011). https://doi.org/10.1021/nn200088x
  8. W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, and S. Liu, "Synthesis of Au nanoparticles decorated graphene oxide nanosheets: nancovalent functionalization by tween 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol", J. Hazard. Mater., 197, 320 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.092
  9. Y. Li, Y. Yu, J. G. Wang, J. Song, Q. Li, M. Dong, and C. Liu, "CO oxidation over graphene supported palladium catalyst", Appl. Catal. B-Environ., 125, 189 (2012). https://doi.org/10.1016/j.apcatb.2012.05.023
  10. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, and H. Zhang, "In situ chemical synthesis of $SnO_2$-graphene nanocomposite as anode materials for lithium-ion batteries", J. Phys. Chem. C., 113, 10842 (2009). https://doi.org/10.1021/jp903821n
  11. F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, and H. Y. Chen, "Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing", Electrochem. Commun., 14, 59 (2012). https://doi.org/10.1016/j.elecom.2011.11.004
  12. C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  13. L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, and B. Liu, "Controlled synthesis of $CeO_2$/graphene nanocomposites with highly enhanced optical and catalytic properties", J. Phys. Chem. C., 116, 11741 (2012). https://doi.org/10.1021/jp3015113
  14. N. R. Wilson, P. A. Pandey, R. Bleanland, R. G. Young, I. A. Kinloch, L. Gong, K. Suenag, J. P. Rourke, and J. Sloan, "Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy", ACS Nano, 3, 2547 (2009). https://doi.org/10.1021/nn900694t
  15. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial", Angew. Chem., Int. Ed., 48, 7752 (2009). https://doi.org/10.1002/anie.200901678
  16. Akhavan, "Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol", Carbon, 49, 11 (2011). https://doi.org/10.1016/j.carbon.2010.08.030
  17. M. G. Chung, D. H. Kim, D. K. Seo, T. W. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, and Y. H. Kim, "Flexible hydrogen sensors using graphene with palladium nanoparticle decoration", Sensors Actuat. B-Chem., 169, 387 (2012). https://doi.org/10.1016/j.snb.2012.05.031
  18. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, "Hierarchically Ordered Macro-Mesoporous $TiO_2$-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities", ACS Nano, 5, 590 (2011). https://doi.org/10.1021/nn102767d
  19. Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, and T. Regier, "$Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction", Nat. Mater., 10, 780 (2011). https://doi.org/10.1038/nmat3087
  20. Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, and H. M. Cheng, "High-energy $MnO_2$ nanowire/graphene and graphene asymmetric electrochemical capacitors", ACS Nano, 10, 5835 (2010).
  21. M. D. Dios, V. Salgueirino, M. P. Lorenzo, and M. A. C. Duarte, "Synthesis of carbon nanotube-inorganic hybrid nanocomposites: an instructional experiment in nanomaterials chemistry", J. Chem. Educ., 89, 280 (2012). https://doi.org/10.1021/ed101130n