A CONSTRUCTION OF STRICTLY INCREASING CONTINUOUS SINGULAR FUNCTIONS

Kyeonghee Jo

Abstract

In this paper, we construct a strictly increasing continuous singular function which has a simple algebraic expression.

1. Introduction

A function is called singular if it is not a constant function and at the same time its derivative is zero almost everywhere. It seems to be very strange that a continuous increasing function is singular. But there are even strictly increasing continuous singular functions (see, for example, [4] and [5]). It's well known that all the derivatives of the boundary functions of strictly convex divisible (or quasihomogeneous) projective domains are such functions if the domain is not an ellipse (see [1]).

In this paper we construct another example of a strictly increasing continuous singular function. Since it is more convenient to use the binary expansion for giving its explicit formula, we'll denote all the real numbers by their binary expressions throughout this paper.

2. Definition of f

For any real number $r=0 . r_{1} r_{2} r_{3} \ldots$ in $[0,1]$, we define

$$
f(r)=\sum_{i=1}^{\infty} r_{i}(0.1)^{2 i+1-\sum_{j=1}^{i} r_{j}}(1.1)^{-1+\sum_{j=1}^{i} r_{j}} .
$$

[^0]If we denote the number of 0 's and 1's among $\left\{r_{1}, \ldots, r_{i}\right\}$ by $n_{i 0}$ and $n_{i 1}$ respectively, that is, $n_{i 1}=r_{1}+r_{2}+\cdots+r_{i}$ and $n_{i 0}=i-n_{i 1}$, then $f(r)$ can be expressed like this :

$$
\begin{aligned}
f(r) & =\sum_{i=1}^{\infty} r_{i}(0.1)^{2 i+1-n_{i 1}}(1.1)^{-1+n_{i 1}} \\
& =\sum_{i=1}^{\infty}(0.1)^{i} r_{i}(0.1)^{n_{i 0}+1}(1.1)^{n_{i 1}-1}
\end{aligned}
$$

Lemma 1. (well-defined)
(i) For each $r=0 . r_{1} r_{2} r_{3} \cdots \in[0,1]$, the series

$$
\sum_{i=1}^{\infty} r_{i}(0.1)^{2 i+1-\sum_{j=1}^{i} r_{j}}(1.1)^{-1+\sum_{j=1}^{i} r_{j}}
$$

converges.
(ii) If $0 . r_{1} r_{2} r_{3} \cdots=0 . r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime} \ldots$, then $f\left(0 . r_{1} r_{2} r_{3} \ldots\right)=f\left(0 . r_{1}^{\prime} r_{2}^{\prime} r_{3}^{\prime} \ldots\right)$.

Proof. To prove (i), it suffices to show that $\sum_{i=1}^{\infty} r_{i}(0.1)^{2 i+1-\sum_{j=1}^{i} r_{i}}(1.1)^{-1+\sum_{j=1}^{i} r_{i}}$ is bounded by 1 . This is an immediate consequence of

$$
\sum_{i=1}^{\infty} r_{i}(0.1)^{2 i+1-\sum_{j=1}^{i} r_{i}}(1.1)^{-1+\sum_{j=1}^{i} r_{i}} \leq \sum_{i=1}^{\infty}(0.1)^{i+1}(1.1)^{-1+i}
$$

and

$$
\sum_{i=1}^{\infty}(0.1)^{i+1}(1.1)^{-1+i}=(0.1)^{2} \sum_{i=1}^{\infty}\{(0.1)(1.1)\}^{i-1}=1
$$

To prove (ii), we show that for $r=0 . r_{1} r_{2} r_{3} \ldots r_{k}\left(r_{k}=1\right), f(r)$ is equal to $f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1} 0 \dot{1}\right)$.
$f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1} 0 \dot{1}\right)$
$=\sum_{i=1}^{k-1} r_{i}(0.1)^{2 i+1-\sum_{j=1}^{i} r_{i}}(1.1)^{-1+\sum_{j=1}^{i} r_{i}}+\sum_{i=1}^{\infty}(0.1)^{2(k+i)+1-\left(n_{k 1}+i-1\right)}(1.1)^{-1+n_{k 1}+i-1}$
$=f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k}\right)-(0.1)^{2 k+1-n_{k 1}}(1.1)^{-1+n_{k 1}}\left[1-\sum_{i=1}^{\infty}(0.1)^{i+1}(1.1)^{i-1}\right]$
$=f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k}\right)-(0.1)^{2 k+1-n_{k 1}}(1.1)^{-1+n_{k 1}}\left[1-\frac{(0.1)^{2}}{1-(0.1)(1.1)}\right]$
$=f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k}\right)$

3. Properties of f

From the definition of f, we get the following:
Lemma 2. Let $r=0 . r_{1} r_{2} r_{3} \ldots r_{k} \in[0,1], n_{1}=\sum_{i=1}^{k} r_{i}$, and $n_{0}=k-n_{1}$. Then $(r, f(r))$ lies on the graph of the linear function passing through

$$
\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1}, f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1}\right)\right)
$$

with the slope $(0.1)^{n_{0}+1}(1.1)^{n_{1}-1}$, that is,

$$
y=f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1}\right)+(0.1)^{n_{0}+1}(1.1)^{n_{1}-1}\left(x-0 . r_{1} r_{2} r_{3} \ldots r_{k-1}\right)
$$

Proof.

$$
\begin{aligned}
f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k}\right) & =f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1}\right)+r_{k}(0.1)^{2 k+1-\sum_{i=1}^{k} r_{i}}(1.1)^{-1+\sum_{i=1}^{k} r_{i}} \\
& =f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1}\right)+r_{k}(0.1)^{k+n_{0}+1}(1.1)^{n_{1}-1} \\
& =f\left(0 . r_{1} r_{2} r_{3} \ldots r_{k-1}\right)+(0.1)^{k} r_{k}(0.1)^{n_{0}+1}(1.1)^{n_{1}-1} .
\end{aligned}
$$

Lemma 3. f has the following properties:
(i) $f(0)=0, f(1)=1$, and $0<f(r)<1$ if $0<r<1$,
(ii) $f\left((0.1)^{k} r\right)=(0.1)^{2 k} f(r)$,
(iii) $f\left(0 . r_{1} r_{2} \ldots\right)=f\left(0 . r_{1} r_{2} \ldots r_{k}\right)+\left(\frac{1.1}{0.1}\right)^{\sum_{j=1}^{k} r_{j}} f\left(0.0 \ldots 0 r_{k+1} r_{k+2} \ldots\right)$,
(iv) f is not convex,
(v) $f(z) \leq z$ for all $z \in[0,1]$.

Proof. (i) and (ii) are immediate from the definition of f.
The equality (iii) is easily proved by calculation :

$$
\begin{aligned}
& f\left(0 . r_{1} r_{2} \ldots\right)-f\left(0 . r_{1} r_{2} \ldots r_{k}\right) \\
& =\sum_{i=k+1}^{\infty} r_{i}(0.1)^{2 i+1-\sum_{j=1}^{i} r_{j}}(1.1)^{-1+\sum_{j=1}^{i} r_{j}} \\
& =(0.1)^{-\sum_{j=1}^{k} r_{j}}(1.1)^{\sum_{j=1}^{k} r_{j}} f\left(0.0 \ldots 0 r_{k+1} r_{k+2} \ldots\right) \\
& =\left(\frac{1.1}{0.1}\right)^{\sum_{j=1}^{k} r_{j}} f\left(0.0 \ldots 0 r_{k+1} r_{k+2} \ldots\right)
\end{aligned}
$$

Non-convexity of f is proved by comparing the points $(0.01, f(0.01)),(0.1, f(0.1))$, and $(0.101, f(0.101))$. Actually one can check

$$
f(0.1)>f(0.01)+\frac{f(0.101)-f(0.01)}{0.101-0.01}(0.1-0.01)
$$

The inequality (v) is an immediate consequence of (5.1) and lemma 6 of the next section.

Corollary 4. For a rational number $r=0 . \dot{r_{1}} \ldots \dot{r_{l}}$ with $n_{1}=\sum_{i=1}^{l} r_{i}$ and $n_{0}=$ $l-n_{1}$,

$$
f(r)=\frac{f\left(0 . r_{1} \ldots r_{l}\right)}{1-(0.1)^{2 l-n_{1}}(1.1)^{n_{1}}}=\frac{10^{2 l}}{10^{2 l}-11^{n_{1}}} f\left(0 . r_{1} \ldots r_{l}\right)
$$

Proof. By (iii) of Lemma 3, we get

$$
\begin{aligned}
f\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right) & =f\left(0 . r_{1} \ldots r_{l}\right)+\left(\frac{1.1}{0.1}\right)^{n_{1}} f\left((0.1)^{l} 0 . \dot{r_{1}} \ldots \dot{r_{l}}\right) \\
& =f\left(0 . r_{1} \ldots r_{l}\right)+\left(\frac{1.1}{0.1}\right)^{n_{1}}(0.1)^{2 l} f\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right) \\
& =f\left(0 . r_{1} \ldots r_{l}\right)+(0.1)^{2 l-n_{1}}(1.1)^{n_{1}} f\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right)
\end{aligned}
$$

and thus

$$
f\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right)=\frac{f\left(0 . r_{1} \ldots r_{l}\right)}{1-(0.1)^{2 l-n_{1}}(1.1)^{n_{1}}}=\frac{10^{2 l}}{10^{2 l}-11^{n_{1}}} f\left(0 . r_{1} \ldots r_{l}\right)
$$

4. f IS STRICTLY INCREASING

Lemma 5.

$$
f(s)<f(t) \text { if } s<t
$$

Proof. Given $s=0 . s_{1} s_{2} \cdots<0 . t_{1} t_{2} \cdots=t$, there is $k>0$ such that

$$
\left.s_{1}=t_{1}, s_{2}=t_{2}, \ldots, s_{k}=t_{k}, s_{k+1}<t_{k+1} \text { (i.e., } s_{k+1}=0 \text { and } t_{k+1}=1\right)
$$

By (iii) and (ii) of Lemma 3,

$$
\begin{aligned}
f(s) & =f\left(0 . s_{1} s_{2} \ldots s_{k}\right)+\left(\frac{1.1}{0.1}\right)^{\sum_{j=1}^{k} s_{j}} f\left(0.0 \ldots 0 s_{k+1} s_{k+2} \ldots\right) \\
& =f\left(0 . s_{1} s_{2} \ldots s_{k}\right)+\left(\frac{1.1}{0.1}\right)^{\sum_{j=1}^{k} s_{j}}(0.1)^{2 k} f\left(0 . s_{k+1} s_{k+2} \ldots\right)
\end{aligned}
$$

and similarly

$$
f(t)=f\left(0 . t_{1} t_{2} \ldots t_{k}\right)+\left(\frac{1.1}{0.1}\right)^{\sum_{j=1}^{k} t_{j}}(0.1)^{2 k} f\left(0 . t_{k+1} t_{k+2} \ldots\right)
$$

By (ii) of Lemma 3 and the fact $s_{k+1}=0, t_{k+1}=1$, we get

$$
f\left(0 . s_{k+1} s_{k+2} \ldots\right)=f\left((0.1)\left(0 . s_{k+2} \ldots\right)\right)=(0.1)^{2} f\left(0 . s_{k+2} s_{k+3} \ldots\right) \leq(0.1)^{2}
$$

and

$$
f\left(0 . t_{k+1} t_{k+2} \ldots\right) \geq f(0.1)=(0.1)^{2}
$$

which implies

$$
f\left(0 . s_{k+1} s_{k+2} \ldots\right) \leq f\left(0 . t_{k+1} t_{k+2} \ldots\right)
$$

If we suppose $f\left(0 . s_{k+1} s_{k+2} \ldots\right)=f\left(0 . t_{k+1} t_{k+2} \ldots\right)$, then this value must be $(0.1)^{2}$ and

$$
s_{k+1}=0, s_{k+2}=s_{k+3}=\cdots=1 \text { and } t_{k+1}=1, t_{k+2}=t_{k+3}=\cdots=0
$$

which implies $s=t$. So we can conclude that $f(s)<f(t)$ if $s<t$.

5. f IS CONTINUOUS

We'll see in this section that f is the limit of a uniformly converging sequence of functions $\left\{f_{n}\right\}$ on $[0,1]$, which are piecewise linear strictly increasing continuous functions. They are geometrically constructed in the following way: First, we define $f_{0}(x) \equiv x$. Then f_{1} is constructed so that $f_{1}(0)=f_{0}(0)=0, f_{1}(1)=f_{0}(1)=$ $1, f_{1}(0.1)=0.1 f_{0}(0.1)$ and f_{1} is linear in both intervals $[0,0.1]$ and $[0.1,1]$. Graphically, we get the graph of f_{1} from the graph of f_{0} by bending at the midpoint 0.1 with lowering the height by half. Now f_{2} is constructed by applying the same process on each interval $[0,0.1]$ and $[0.1,1]$, that is, $f_{2}(0.01)=0.1 f_{1}(0.01), f_{2}(0.11)=f_{1}(0.1)+$ $0.1\left(f_{1}(0.11)-f_{1}(0.1)\right)$ and f_{2} is linear in all four intervals $[0,0.01],[0.01,0.1],[0.1,0.11]$ and $[0.11,1]$ (actually, f_{2} is linear in $[0.01,0.11]$, so the graph of f_{2} consists of three line segments). Repeating this procedure, we get strictly increasing, piecewise linear, continuous functions f_{n} 's. Note that

$$
\begin{equation*}
0<\cdots \leq f_{n+1}(x) \leq f_{n}(x) \leq \cdots \leq f_{1}(x) \leq f_{0}(x)=x \tag{5.1}
\end{equation*}
$$

and thus $f_{n}(x)$ converges for all $x \in[0,1]$. If we define a function F on $[0,1]$ by

$$
F(x)=\lim _{n \rightarrow \infty} f_{n}(x), \text { for all } x \in[0,1]
$$

then F is continuous because $\left\{f_{n}\right\}$ is a uniformly converging sequence. ${ }^{\text {a) }}$
Lemma 6. $F \equiv f$.
Proof. First, we show that for any natural number k and any element $\left(r_{1}, \ldots, r_{k}\right), r_{i} \in$ $\{0,1\}$,

$$
F\left(0 . r_{1} r_{2} \ldots r_{k}\right)=F\left(0 . r_{1} \ldots r_{k-1}\right)+r_{k}(0.1)^{k+n_{k 0}+1}(1.1)^{n_{k 1}-1}
$$

[^1]and
$$
F\left(0 . r_{1} r_{2} \ldots r_{k}\right)=\sum_{i=1}^{m} r_{i}(0.1)^{2 i+1-n_{i 1}}(1.1)^{-1+n_{i 1}}
$$
where $n_{k 1}=\sum_{i=1}^{k} r_{i}$ and $n_{k 0}=k-n_{k 1}$. This is obviously true for $k=1$. If we assume that this holds for all $k \leq m$, then
\[

$$
\begin{aligned}
F\left(0 . r_{1} r_{2} \ldots r_{m}\right) & =f_{m}\left(0 . r_{1} r_{2} \ldots r_{m}\right) \\
& =f_{m-1}\left(0 . r_{1} \ldots r_{m-1}\right)+r_{m}(0.1)^{m+n_{m 0}+1}(1.1)^{n_{m 1}-1} \\
& =f_{m-1}\left(0 . r_{1} \ldots r_{m-1}\right)+r_{m}(0.1)^{2 m+1-n_{m 1}}(1.1)^{n_{m 1}-1} \\
& =\sum_{i=1}^{m} r_{i}(0.1)^{2 i+1-n_{i 1}}(1.1)^{-1+n_{i 1}}
\end{aligned}
$$
\]

And from the definition of F we see

$$
\begin{aligned}
& F\left(0 . r_{1} r_{2} \ldots r_{m+1}\right)=f_{m+1}\left(0 . r_{1} r_{2} \ldots r_{m+1}\right) \\
& =f_{m}\left(0 . r_{1} \ldots r_{m}\right)+(0.1) r_{m+1}\left(f_{m}\left(0 . r_{1} \ldots r_{m}+(0.1)^{m+1}\right)-f_{m}\left(0 . r_{1} \ldots r_{m}\right)\right)
\end{aligned}
$$

We may assume $r_{m+1}=1$. Since the slope of f_{m} in the interval

$$
\left(0 . r_{1} \ldots r_{m}, 0 . r_{1} \ldots r_{m} r_{m+1}\right)=\left(0 . r_{1} \ldots r_{m}, 0 . r_{1} \ldots r_{m} 1\right)
$$

is $(0.1)^{n_{m, 0}}(1.1)^{n_{m, 1}}=(0.1)^{n_{m+1,0}}(1.1)^{n_{m+1,1}-1}$, we get

$$
\begin{aligned}
F\left(0 . r_{1} r_{2} \ldots r_{m+1}\right) & =f_{m}\left(0 . r_{1} \ldots r_{m}\right)+(0.1) r_{m+1}\left(f_{m}\left(0 . r_{1} \ldots r_{m+1}\right)-f_{m}\left(0 . r_{1} \ldots r_{m}\right)\right) \\
& =f_{m}\left(0 . r_{1} \ldots r_{m}\right)+(0.1) r_{m+1}(0.1)^{m+1}(0.1)^{n_{m+1,0}}(1.1)^{n_{m+1,1}-1} \\
& =f_{m}\left(0 . r_{1} \ldots r_{m}\right)+r_{m+1}(0.1)^{(m+1)+n_{m+1,0}+1}(1.1)^{n_{m+1,1}-1} \\
& =\sum_{i=1}^{m+1} r_{i}(0.1)^{2 i+1-n_{i 1}}(1.1)^{-1+n_{i 1}}
\end{aligned}
$$

which proves our claim and implies

$$
F\left(0 . r_{1} r_{2} \ldots r_{k}\right)=f\left(0 . r_{1} r_{2} \ldots r_{k}\right)
$$

For an arbitrary point $r=0 . r_{1} r_{2} \ldots$ in $[0,1]$, we consider the increasing sequence $\left\{r(k)=0 . r_{1} \ldots r_{k}\right\}$ converging to r. Since F is continuous,

$$
\begin{aligned}
F\left(0 . r_{1} r_{2} \ldots\right) & =\lim _{k \rightarrow \infty} F\left(0 . r_{1} r_{2} \ldots r_{k}\right) \\
& =\lim _{k \rightarrow \infty} \sum_{i=1}^{k} r_{i}(0.1)^{2 i+1-n_{i 1}}(1.1)^{-1+n_{i 1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} r_{i}(0.1)^{2 i+1-n_{i 1}}(1.1)^{-1+n_{i 1}} \\
& =f\left(0 . r_{1} r_{2} \ldots\right)
\end{aligned}
$$

Corollary 7. f is a strictly increasing continuous function.

6. Differentiability of f at Rational Numbers

In this section, we'll investigate the differentiability of f at rational numbers. Each rational number r in $[0,1]$ has an infinite binary expansion $r=0 . s_{1} \ldots s_{k} \dot{r_{1}} \ldots \dot{r_{l}}$. If we denote the number of 1 's in $\left\{r_{1}, \ldots, r_{l}\right\}$ and 0 's by n_{1} and n_{0} respectively, that is, $n_{1}=\sum_{i=1}^{l} r_{i}$ and $n_{0}=l-n_{1}$, then we get a number $D(r)=(0.1)^{n_{0}}(1.1)^{n_{1}}$. For example, $D(r)=1.1>1$ for any rational number r which has a finite binary expansion, since $0 . r_{1} \ldots r_{k}=0 . r_{1}, \ldots, r_{k-1} 0 \dot{1}$.

We'll see in this section that the number $D(r)$ is closely related to the differentiability of f at r. Actually we'll prove the following.

Theorem 8. For a rational number r, f is differentiable at r if and only if $D(r)<1$. Furthermore, $f^{\prime}(r)=0$ if exists.
6.1. Differentiability at $r=0 . r_{1} \ldots r_{k}$ We can see immediately from the geometric construction of f that f is not differentiable at rational numbers which have finite binary expansions, that is, f has singular points at those points.

Lemma 9. If r is a rational number with a finite binary expansion, f is not differentiable at r.

Proof. Let $r=0 . r_{1}, \ldots, r_{k}$ be the shortest finite binary expression of r. Then r_{k} must be 1 and

$$
r=0 . r_{1}, \ldots, r_{k-1} 0 \dot{1}
$$

Consider the following sequences $r^{+}(n)$ and $r^{-}(n)$ converging to $r: r^{+}(n)$ is an increasing sequence defined as

$$
\begin{aligned}
& r^{+}(1)=0 . r_{1}, \ldots, r_{k} 1 \\
& r^{+}(2)=0 . r_{1}, \ldots, r_{k} 01 \\
& r^{+}(3)=0 . r_{1}, \ldots, r_{k} 001
\end{aligned}
$$

and $r^{-}(n)$ is a decreasing sequence defined as

$$
\begin{aligned}
& r^{-}(1)=0 \cdot r_{1}, \ldots, r_{k-1} 01 \\
& r^{-}(2)=0 \cdot r_{1}, \ldots, r_{k-1} 011 \\
& r^{-}(3)=0 . r_{1}, \ldots, r_{k-1} 0111
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{f(r)-f\left(r^{+}(n)\right)}{r-r^{+}(n)} & =\frac{(0.1)^{2(k+n)+1-\left(n_{1}+1\right)}(1.1)^{-1+n(1+1)}}{(0.1)^{k+n}} \\
& =(0.1)^{k+n-n_{1}}(1.1)^{n_{1}}=(0.1)^{n_{0}}(1.1)^{n_{1}}(0.1)^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{f(r)-f\left(r^{-}(n)\right)}{r-r^{-}(n)} \\
= & \frac{(0.1)^{2 k+1-n_{1}}(1.1)^{-1+n_{1}}-\sum_{i=1}^{n}(0.1)^{2(k+i)+1-\left(n_{1}+i-1\right)}(1.1)^{-1+\left(n_{1}+i-1\right)}}{(0.1)^{k+n}} \\
= & \frac{(0.1)^{2 k+1-n_{1}}(1.1)^{-1+n_{1}}\left(1-\frac{0.1}{1.1} \sum_{i=1}^{n}(0.1)^{i}(1.1)^{i}\right)}{(0.1)^{k+n}} \\
= & (0.1)^{k+1-n_{1}}(1.1)^{-1+n_{1}}(1.1)^{n} .
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{f(r)-f\left(r^{+}(n)\right)}{r-r^{+}(n)}=0, \lim _{n \rightarrow \infty} \frac{f(r)-f\left(r^{-}(n)\right)}{r-r^{-}(n)}=\infty
$$

and thus f is not differentiable at r.
6.2. For each real number $r=0 . r_{1} r_{2} r_{3} \ldots$ in $[0,1]$, we get a sequence $\left\{a_{k}(r)=\right.$ $\left.(0.1)^{n_{k 0}}(1.1)^{n_{k 1}}\right\}$. Note that for a rational number $r=0 . s_{1} \ldots s_{k} \dot{r_{1}} \ldots \dot{r_{l}} \ldots$,

$$
D(r)=\frac{a_{k+l}(r)}{a_{k}(r)}=\frac{a_{k+2 l}(r)}{a_{k+l}(r)}=\frac{a_{k+3 l}(r)}{a_{k+2 l}(r)}=\ldots
$$

and

$$
D(r)^{n}=\frac{a_{k+n l}(r)}{a_{k}(r)}=\frac{a_{k+(n+m) l}(r)}{a_{k+m l}(r)}
$$

Lemma 10. (i) f is differentiable at r if and only if f is differentiable at $(0.1)^{k} r$ and $f^{\prime}\left((0.1)^{k} r\right)=(0.1)^{k} f^{\prime}(r)$,
(ii) If two rational numbers $z=0 . z_{1} z_{2} \ldots$ and $r=0 . r_{1} r_{2} \ldots \in[0,1]$ have the same first k digits, that is, $z_{1}=r_{1}, z_{2}=r_{2}, \ldots, z_{k}=r_{k}$, then

$$
\frac{f(r)-f(z)}{r-z}=a_{k}(r) \frac{f\left(0 \cdot r_{k+1} r_{k+2} \ldots\right)-f\left(0 . z_{k+1} z_{k+2} \ldots\right)}{0 \cdot r_{k+1} r_{k+2} \cdots-0 . z_{k+1} z_{k+2} \cdots}
$$

(iii) f is differentiable at $r=0 . r_{1} r_{2} \ldots$ if and only if f is differentiable at 0. $r_{k+1} r_{k+2} \ldots$ and

$$
f^{\prime}(r)=a_{k}(r) f^{\prime}\left(0 \cdot r_{k+1} r_{k+2} \ldots\right) .
$$

Proof. (i)

$$
\begin{aligned}
\frac{f\left((0.1)^{k} r+h\right)-f\left((0.1)^{k} r\right)}{h} & =\frac{f\left((0.1)^{k} r+(0.1)^{k} h^{\prime}\right)-f\left((0.1)^{k} r\right)}{(0.1)^{k} h^{\prime}} \\
& =\frac{(0.1)^{2 k}\left[f\left(r+h^{\prime}\right)-f(r)\right]}{(0.1)^{k} h^{\prime}} \\
& =(0.1)^{k} \frac{f\left(r+h^{\prime}\right)-f(r)}{h^{\prime}},
\end{aligned}
$$

where $h^{\prime}=10^{k} h$.
(ii) For any $z=0 . z_{1} z_{2} \cdots \in[0,1]$ such that

$$
z_{1}=r_{1}, z_{2}=r_{2}, \ldots, z_{k}=r_{k},
$$

we get

$$
\begin{aligned}
& \frac{f(r)-f(z)}{r-z} \\
= & \frac{(0.1)^{2 k-n_{k 1}}(1.1)^{n_{k 1}}\left[f\left(0 . r_{k+1} r_{k+2} \ldots\right)-f\left(0 . z_{k+1} z_{k+2} \ldots\right)\right]}{(0.1)^{k}\left[0 . r_{k+1} r_{k+2} \cdots-0 . z_{k+1} z_{k+2} \cdots\right]} \\
= & (0.1)^{n_{k 0}}(1.1)^{n_{k 1}} \frac{f\left(0 . r_{k+1} r_{k+2} \cdots\right)-f\left(0 . z_{k+1} z_{k+2} \ldots\right)}{0 . r_{k+1} r_{k+2} \cdots-0 . z_{k+1} z_{k+2} \cdots} \\
= & a_{k}(r) \frac{f\left(0 . r_{k+1} r_{k+2} \cdots\right)-f\left(0 . z_{k+1} z_{k+2} \ldots\right)}{0 . r_{k+1} r_{k+2} \cdots-0 . z_{k+1} z_{k+2} \cdots} .
\end{aligned}
$$

(iii) Suppose $\left\{z^{\prime}(n)=0 . z_{n, k+1} z_{n, k+2} \ldots\right\}$ is an arbitrary sequence of real numbers in $[0,1]$ which converges to $0 . r_{k+1} r_{k+2} r_{k+3} \ldots$. Then the sequence

$$
\left\{z(n)=0 . r_{1} r_{2} \ldots r_{k} z_{n, k+1} z_{n, k+2} \cdots=0 . r_{1} r_{2} \ldots r_{k}+(0.1)^{k} z^{\prime}(n)\right\}
$$

converges to r, and by (ii)

$$
\frac{f(r)-f(z(n))}{r-z(n)}=a_{k}(r) \frac{f\left(0 \cdot r_{k+1} r_{k+2} \cdots\right)-f\left(z^{\prime}(n)\right)}{0 \cdot r_{k+1} r_{k+2} \cdots-z^{\prime}(n)} .
$$

So if if f is differntiable at r, then f is differntiable at $0 . r_{k+1} r_{k+2} r_{k+3} \ldots$ and $f^{\prime}\left(0 . r_{k+1} r_{k+2} \ldots\right)=\frac{1}{a_{k}(r)} f^{\prime}(r)$.

Conversely, if f is differntiable at $0 . r_{k+1} r_{k+2} r_{k+3} \ldots$ and $z(n)=0 . z_{n, 1} z_{n, 2} \ldots$ is an arbitrary sequence converging to r, then there is a natural number t
such that

$$
z_{n, 1}=r_{1}, z_{n, 2}=r_{2}, \ldots, z_{n, k}=r_{k}, \text { for all } n>t .
$$

So we get

$$
\begin{aligned}
f^{\prime}(r) & =\lim _{n \rightarrow \infty} \frac{f(r)-f(z(n))}{r-z(n)} \\
& =a_{k}(r) \lim _{n \rightarrow \infty} \frac{f\left(0 . r_{k+1} r_{k+2} \cdots\right)-f\left(0 . z_{n, k+1} z_{n, k+2} \cdots\right)}{0 \cdot r_{k+1} r_{k+2} \cdots-0 . z_{n, k+1} z_{n, k+2} \cdots} \\
& =a_{k}(r) f^{\prime}\left(0 . r_{k+1} r_{k+2} \cdots\right) .
\end{aligned}
$$

6.3. Differentiability at $r=0 . \dot{r}_{1} \ldots \dot{r}_{l}$ Given a rational number $r=0 . \dot{r}_{1} \ldots \dot{r}_{l}$, we define $r(n l)$ as follows:

$$
\begin{gathered}
r(l)=0 . r_{1} \ldots r_{l} \\
r(2 l)=0 . r_{1} \ldots r_{l} r_{1} \ldots r_{l} \\
r(3 l)=0 . r_{1} \ldots r_{l} r_{1} \ldots r_{l} r_{1} \ldots r_{l} \\
\ldots \\
r(n l)=0 . r_{1} \ldots r_{l} r_{1} \ldots r_{l} r_{1} \ldots r_{l} \ldots r_{1} \ldots r_{l}(\mathrm{n} \text { times })
\end{gathered}
$$

By Lemma 10, we see that if f is differentiable at a rational number $r=0 . \dot{r}_{1} \ldots \dot{r}_{l}$, then

$$
\begin{aligned}
f^{\prime}(r) & =f^{\prime}\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right) \\
& =D(r) f^{\prime}\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right) \\
& =D(r)^{2} f^{\prime}\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right) \\
& =\ldots \\
& =D(r)^{n} f^{\prime}\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right)=D(r)^{n} f^{\prime}(r),
\end{aligned}
$$

which implies $f^{\prime}(r)=0$ because $D(r)$ cannot be 1 . Actually we can prove
Lemma 11. For any rational number $r=0 . \dot{r_{1}} \ldots \dot{r_{l}}$, the following is true:
(i) $\frac{f(r)-f(r(n l))}{r-r(n l)}=D(r)^{n} \frac{f(r)}{r}$,
(ii) if f is differentiable at r, then $D(r)<1$ and $f^{\prime}(r)=0$,
(iii) if $D(r)<1$, then f is differentiable at r and $f^{\prime}(r)=0$.

Proof. (i) Since $a_{n l}(r)=D(r)^{n}$, this is immediate from (ii) of Lemma 10.
(ii) By (i), if f is differentiable at r, then the sequence $\left\{D(r)^{n}\right\}$ must converge and

$$
f^{\prime}(r)=\lim _{n \rightarrow \infty} \frac{f(r)-f(r(n l))}{r-r(n l)}=\frac{f(r)}{r} \lim _{n \rightarrow \infty} D(r)^{n}
$$

which implies $D(r)<1$ and $f^{\prime}(r)=0$ because $D(r)=(0.1)^{n_{0}}(1.1)^{n_{1}}$ cannot be 1.
(iii) If $\left\{b_{k}\right\}$ is any increasing sequence converging to r, then we can find a sequence $\left\{n_{k}\right\}$ of natural numbers satisfying the following:

$$
r\left(n_{k} l\right) \leq b_{k}<r\left(\left(n_{k}+1\right) l\right)<r, \lim _{k \rightarrow \infty} n_{k}=\infty .
$$

Now we see

$$
\begin{aligned}
0 \leq \frac{f(r)-f\left(b_{k}\right)}{r-b_{k}} & \leq \frac{f(r)-f\left(r\left(n_{k} l\right)\right)}{r-r\left(\left(n_{k}+1\right) l\right)} \\
& =\frac{f(r)-f\left(r\left(n_{k} l\right)\right)}{r-r\left(n_{k} l\right)} \frac{r-r\left(n_{k} l\right)}{r-r\left(\left(n_{k}+1\right) l\right)} \\
& =D(r)^{n_{k}} \frac{f(r)}{r} \frac{(0.1)^{n_{k} l} r}{(0.1)^{\left(n_{k}+1\right) l} r} \\
& =10^{l} \frac{f(r)}{r} D(r)^{n_{k}} .
\end{aligned}
$$

Therefore $\lim _{k \rightarrow \infty} \frac{f(r)-f\left(b_{k}\right)}{r-b_{k}}=0$ and thus the left derivative of f at r exists and should be 0 if $D(r)<1$.

To caculate the right derivative of f at r, suppose that $\left\{d_{k}\right\}$ is a decreasing sequence converging to r. Then there is a sequence $\left\{n_{k}\right\}$ of natural numbers satisfying the following:

$$
r\left(\left(n_{k}+1\right) l\right)+(0.1)^{\left(n_{k}+1\right) l} \leq d_{k}<r\left(n_{k} l\right)+(0.1)^{n_{k} l}, \lim _{k \rightarrow \infty} n_{k}=\infty .
$$

In fact, this inequality holds when the first $n_{k} l$ digits of d_{k} and r are identical and $\left(n_{k}+1\right) l$ digits are not the same. So we get

$$
d_{k}^{\prime}=10^{n_{k} l}\left(d_{k}-r\left(n_{k} l\right)\right) \geq r(l)+(0.1)^{l},
$$

and

$$
\begin{aligned}
\left|r-d_{k}^{\prime}\right| & \geq r(l)+(0.1)^{l}-r \\
= & (0.1)^{l}-(0.1)^{l} r \\
= & (0.1)^{l}(1-r) .
\end{aligned}
$$

Using this inequality and (ii) of Lemma 10, we get

$$
\begin{aligned}
\left|\frac{f(r)-f\left(d_{k}\right)}{r-d_{k}}\right| & =D(r)^{n_{k}}\left|\frac{f(r)-f\left(d_{k}^{\prime}\right)}{r-d_{k}^{\prime}}\right| \\
& \leq \frac{10^{l} D(r)^{n_{k}}}{1-r}\left|f(r)-f\left(d_{k}^{\prime}\right)\right| \\
& =\frac{10^{l}}{1-r} D(r)^{n_{k}}
\end{aligned}
$$

which implies that the right derivative of f at r exists and should be 0 if $D(r)<1$.
6.4. Differentiability at $z=0 . s_{1} \ldots s_{k} \dot{r_{1}} \ldots \dot{r_{l}}$ The lemma below completes the proof of Theorem 8.

Lemma 12. For any rational number $z=0 . s_{1} \ldots s_{k} \dot{r_{1}} \ldots \dot{r_{l}}$, the following is true:
(i) f is differentiable at z if and only if $D(z)=(0.1)^{n_{0}}(1.1)^{n_{1}}<1$,
(ii) $f^{\prime}(z)=0$ if exists.

Proof. By Lemma 10, we see that f is differentiable at z if and only if f is differentiable at $r=0 . \dot{r_{1}} \ldots \dot{r_{l}}$ and

$$
f^{\prime}\left(0 . s_{1} \ldots s_{k} \dot{r_{1}} \ldots \dot{r_{l}}\right)=a_{k}(z) f^{\prime}\left(0 . \dot{r_{1}} \ldots \dot{r_{l}}\right)
$$

We also see by Lemma 11 that $D(r)<1$ if and only if f is differentiable at r and $f^{\prime}(r)=0$ if exists. Therefore $f^{\prime}(z)=0$ if f is differentiable at z and the following three are equivalent :
(1) f is differentiable at $z=0 . s_{1} \ldots s_{k} \dot{r_{1}} \ldots \dot{r_{l}}$,
(2) f is differentiable at $r=0 . \dot{r_{1}} \ldots \dot{r_{l}}$,
(3) $D(z)=D(r)<1$.

This proves (i) and (ii).

7. f IS SINGULAR

In this section, we'll show that f is a singular function.
Definition 13. For $x \in[0,1]$, we say that x is called simply normal (to the base 2) if both 0 and 1 appear with the same asymptotic frequency $\frac{1}{2}$, that is,

$$
\lim _{k \rightarrow \infty} \frac{n_{k 0}}{k}=\frac{1}{2}, \text { and } \lim _{k \rightarrow \infty} \frac{n_{k 1}}{k}=\frac{1}{2}
$$

It is well-known that the set of simply normal numbers in $[0,1]$ has full measure (see [2].)

Define three subsets of $[0,1], E_{1}, E_{2}$ and E as follows :
$E=\{x \in[0,1] \mid f$ is differentiable at $x\}$,
$E_{1}=\left\{x \in[0,1] \mid f\right.$ is differentiable at x and $\left.\lim _{k \rightarrow \infty} a_{k}(r)=0\right\}$,
$E_{2}=\{x \in[0,1] \mid f$ is differentiable at x and x is simply normal $\}$.
Then $E_{2} \subset E_{1} \subset E$, since

$$
a_{k}(r)=(0.1)^{n_{k 0}}(1.1)^{n_{k 1}}=\left((0.1)^{\frac{n_{k 0}}{k}}(1.1)^{\frac{n_{k 1}}{k}}\right)^{k}
$$

and thus E, E_{1} and E_{2} have all full measure, since f is strictly increasing.
Theorem 14. f is a continuous strictly increasing singular function with $f^{\prime}(x)=0$ for all $x \in E_{1}$.

Proof. Consider the sequence $r(k)=0 . r_{1} r_{2} r_{3} \ldots r_{k}$ for a real number $r=0 . r_{1} r_{2} r_{3} \ldots$ By Lemma 3,

$$
\begin{aligned}
f(r)-f(r(k)) & =(0.1)^{-n_{k 1}}(1.1)^{n_{k 1}} f\left((0.1)^{k} 0 . r_{k+1} r_{k+2} \ldots\right) \\
& =(0.1)^{2 k-n_{k 1}}(1.1)^{n_{k 1}} f\left(0 . r_{k+1} r_{k+2} \ldots\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{f(r)-f(r(k))}{r-r(k)} & =\frac{(0.1)^{2 k-n_{k 1}}(1.1)^{n_{k 1}} f\left(0 \cdot r_{k+1} r_{k+2} \ldots\right)}{(0.1)^{k} 0 \cdot r_{k+1} r_{k+2} \ldots} \\
& =(0.1)^{n_{k 0}}(1.1)^{n_{k 1}} \frac{f\left(0 \cdot r_{k+1} r_{k+2} \ldots\right)}{0 \cdot r_{k+1} r_{k+2} \cdots} \\
& =a_{k}(r) \frac{f\left(0 \cdot r_{k+1} r_{k+2} \ldots\right)}{0 . r_{k+1} r_{k+2} \cdots}
\end{aligned}
$$

Since $f(z) \leq z$ for all real number $z \in[0,1]$, we get an inequality,

$$
0 \leq \frac{f(r)-f(r(k))}{r-r(k)} \leq a_{k}(r)
$$

and this implies that if f is differentiable at r then $0 \leq f^{\prime}(r) \leq \lim _{k \rightarrow \infty} a_{k}(r)$. Therefore $f^{\prime}(r)=0$ for all $r \in E_{1}$ and thus f is a singular function, which completes the proof.

References

1. K. Jo: Quasi-homogeneous domains and convex affine manifolds. Topology Appl. 134 (2003), no. 2, 123-146
2. L. Kuipers \& H. Niederreiter: Uniform distribution of sequences. Wiley-Intersci., New York, 1974.
3. H. Okamoto: A remark on continuous, nowhere differentiable functions. Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 3, 47-50.
4. H. Okamoto \& M. Wunsch: A geometric construction of continuous, strictly increasing singular functions. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 7, 114-118.
5. R. Salem: On some singular monotonic functions which are strictly increasing. Trans. Amer. Math. Soc. 53 (1943), 427-439.

Division of Liberal Arts and Sciences, Mokpo National Maritime University, Mokpo, Chonnam 530-729, Korea
Email address: khjo@mmu.ac.kr

[^0]: Received by the editors October 13, 2015. Accepted January 26, 2016.
 2010 Mathematics Subject Classification. 26A30.
 Key words and phrases. singular functions, strictly increasing, continuous.

[^1]: ${ }^{\text {a) }}$ This geometric constuction is exactly the same as the method of performing the transform $T(1 / 4,3 / 4)$ that R. Salem used in his paper [5]. H. Okamoto had also generalized Salem's method in his paper [3] and [4] to obtain more singular functions and continuous nowhere differntiable functions.

