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A CONSTRUCTION OF STRICTLY INCREASING CONTINUOUS
SINGULAR FUNCTIONS

Kyeonghee Jo

Abstract. In this paper, we construct a strictly increasing continuous singular
function which has a simple algebraic expression.

1. Introduction

A function is called singular if it is not a constant function and at the same
time its derivative is zero almost everywhere. It seems to be very strange that a
continuous increasing function is singular. But there are even strictly increasing
continuous singular functions (see, for example, [4] and [5]). It’s well known that
all the derivatives of the boundary functions of strictly convex divisible (or quasi-
homogeneous) projective domains are such functions if the domain is not an ellipse
(see [1]).

In this paper we construct another example of a strictly increasing continuous
singular function. Since it is more convenient to use the binary expansion for giving
its explicit formula, we’ll denote all the real numbers by their binary expressions
throughout this paper.

2. Definition of f

For any real number r = 0.r1r2r3 . . . in [0, 1], we define

f(r) =
∞∑

i=1

ri(0.1)2i+1−∑i
j=1 rj (1.1)−1+

∑i
j=1 rj .
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If we denote the number of 0’s and 1’s among {r1, . . . , ri} by ni0 and ni1 respec-
tively, that is, ni1 = r1 + r2 + · · ·+ ri and ni0 = i− ni1, then f(r) can be expressed
like this :

f(r) =
∞∑

i=1

ri(0.1)2i+1−ni1(1.1)−1+ni1

=
∞∑

i=1

(0.1)iri(0.1)ni0+1(1.1)ni1−1.

Lemma 1. (well-defined)

(i) For each r = 0.r1r2r3 · · · ∈ [0, 1], the series
∞∑

i=1

ri(0.1)2i+1−∑i
j=1 rj (1.1)−1+

∑i
j=1 rj

converges.
(ii) If 0.r1r2r3 · · · = 0.r′1r

′
2r
′
3 . . . , then f(0.r1r2r3 . . . ) = f(0.r′1r

′
2r
′
3 . . . ).

Proof. To prove (i), it suffices to show that
∑∞

i=1 ri(0.1)2i+1−∑i
j=1 ri(1.1)−1+

∑i
j=1 ri

is bounded by 1. This is an immediate consequence of
∞∑

i=1

ri(0.1)2i+1−∑i
j=1 ri(1.1)−1+

∑i
j=1 ri ≤

∞∑

i=1

(0.1)i+1(1.1)−1+i,

and
∞∑

i=1

(0.1)i+1(1.1)−1+i = (0.1)2
∞∑

i=1

{(0.1)(1.1)}i−1 = 1.

To prove (ii), we show that for r = 0.r1r2r3 . . . rk(rk = 1), f(r) is equal to
f(0.r1r2r3 . . . rk−101̇).

f(0.r1r2r3 . . . rk−101̇)

=
k−1∑

i=1

ri(0.1)2i+1−∑i
j=1 ri(1.1)−1+

∑i
j=1 ri +

∞∑

i=1

(0.1)2(k+i)+1−(nk1+i−1)(1.1)−1+nk1+i−1

=f(0.r1r2r3 . . . rk)− (0.1)2k+1−nk1(1.1)−1+nk1 [1−
∞∑

i=1

(0.1)i+1(1.1)i−1]

=f(0.r1r2r3 . . . rk)− (0.1)2k+1−nk1(1.1)−1+nk1 [1− (0.1)2

1− (0.1)(1.1)
]

=f(0.r1r2r3 . . . rk)

¤



STRICTLY INCREASING CONTINUOUS SINGULAR FUNCTIONS 23

3. Properties of f

From the definition of f , we get the following:

Lemma 2. Let r = 0.r1r2r3 . . . rk ∈ [0, 1], n1 =
∑k

i=1 ri, and n0 = k − n1. Then
(r, f(r)) lies on the graph of the linear function passing through

(0.r1r2r3 . . . rk−1, f(0.r1r2r3 . . . rk−1))

with the slope (0.1)n0+1(1.1)n1−1, that is,

y = f(0.r1r2r3 . . . rk−1) + (0.1)n0+1(1.1)n1−1(x− 0.r1r2r3 . . . rk−1).

Proof.

f(0.r1r2r3 . . . rk) =f(0.r1r2r3 . . . rk−1) + rk(0.1)2k+1−∑k
i=1 ri(1.1)−1+

∑k
i=1 ri

=f(0.r1r2r3 . . . rk−1) + rk(0.1)k+n0+1(1.1)n1−1

=f(0.r1r2r3 . . . rk−1) + (0.1)krk(0.1)n0+1(1.1)n1−1.

¤

Lemma 3. f has the following properties:

(i) f(0) = 0, f(1) = 1, and 0 < f(r) < 1 if 0 < r < 1,
(ii) f((0.1)kr) = (0.1)2kf(r),
(iii) f(0.r1r2 . . . ) = f(0.r1r2 . . . rk) + (1.1

0.1)
∑k

j=1 rjf(0.0 . . . 0rk+1rk+2 . . . ),
(iv) f is not convex,
(v) f(z) ≤ z for all z ∈ [0, 1].

Proof. (i) and (ii) are immediate from the definition of f .
The equality (iii) is easily proved by calculation :

f(0.r1r2 . . . )− f(0.r1r2 . . . rk)

=
∞∑

i=k+1

ri(0.1)2i+1−∑i
j=1 rj (1.1)−1+

∑i
j=1 rj

=(0.1)−
∑k

j=1 rj (1.1)
∑k

j=1 rjf(0.0 . . . 0rk+1rk+2 . . . )

=(
1.1
0.1

)
∑k

j=1 rjf(0.0 . . . 0rk+1rk+2 . . . )

Non-convexity of f is proved by comparing the points (0.01, f(0.01)), (0.1, f(0.1)),
and (0.101, f(0.101)). Actually one can check

f(0.1) > f(0.01) +
f(0.101)− f(0.01)

0.101− 0.01
(0.1− 0.01).
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The inequality (v) is an immediate consequence of (5.1) and lemma 6 of the next
section. ¤

Corollary 4. For a rational number r = 0.ṙ1 . . . ṙl with n1 =
∑l

i=1 ri and n0 =
l − n1,

f(r) =
f(0.r1 . . . rl)

1− (0.1)2l−n1(1.1)n1
=

102l

102l − 11n1
f(0.r1 . . . rl).

Proof. By (iii) of Lemma 3, we get

f(0.ṙ1 . . . ṙl) =f(0.r1 . . . rl) + (
1.1
0.1

)n1f((0.1)l0.ṙ1 . . . ṙl)

=f(0.r1 . . . rl) + (
1.1
0.1

)n1(0.1)2lf(0.ṙ1 . . . ṙl)

=f(0.r1 . . . rl) + (0.1)2l−n1(1.1)n1f(0.ṙ1 . . . ṙl)

and thus

f(0.ṙ1 . . . ṙl) =
f(0.r1 . . . rl)

1− (0.1)2l−n1(1.1)n1
=

102l

102l − 11n1
f(0.r1 . . . rl).

¤

4. f is strictly increasing

Lemma 5.

f(s) < f(t) if s < t

Proof. Given s = 0.s1s2 · · · < 0.t1t2 · · · = t, there is k > 0 such that

s1 = t1, s2 = t2, . . . , sk = tk, sk+1 < tk+1 (i.e., sk+1 = 0 and tk+1 = 1).

By (iii) and (ii) of Lemma 3,

f(s) =f(0.s1s2 . . . sk) + (
1.1
0.1

)
∑k

j=1 sjf(0.0 . . . 0sk+1sk+2 . . . )

=f(0.s1s2 . . . sk) + (
1.1
0.1

)
∑k

j=1 sj (0.1)2kf(0.sk+1sk+2 . . . ),

and similarly

f(t) = f(0.t1t2 . . . tk) + (
1.1
0.1

)
∑k

j=1 tj (0.1)2kf(0.tk+1tk+2 . . . ).

By (ii) of Lemma 3 and the fact sk+1 = 0, tk+1 = 1, we get

f(0.sk+1sk+2 . . . ) = f((0.1)(0.sk+2 . . . )) = (0.1)2f(0.sk+2sk+3 . . . ) ≤ (0.1)2,

and
f(0.tk+1tk+2 . . . ) ≥ f(0.1) = (0.1)2,
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which implies
f(0.sk+1sk+2 . . . ) ≤ f(0.tk+1tk+2 . . . ).

If we suppose f(0.sk+1sk+2 . . . ) = f(0.tk+1tk+2 . . . ), then this value must be (0.1)2

and

sk+1 = 0, sk+2 = sk+3 = · · · = 1 and tk+1 = 1, tk+2 = tk+3 = · · · = 0,

which implies s = t. So we can conclude that f(s) < f(t) if s < t. ¤

5. f is continuous

We’ll see in this section that f is the limit of a uniformly converging sequence
of functions {fn} on [0, 1], which are piecewise linear strictly increasing continuous
functions. They are geometrically constructed in the following way: First, we de-
fine f0(x) ≡ x. Then f1 is constructed so that f1(0) = f0(0) = 0, f1(1) = f0(1) =
1, f1(0.1) = 0.1f0(0.1) and f1 is linear in both intervals [0, 0.1] and [0.1, 1]. Graphi-
cally, we get the graph of f1 from the graph of f0 by bending at the midpoint 0.1 with
lowering the height by half. Now f2 is constructed by applying the same process on
each interval [0, 0.1] and [0.1, 1], that is, f2(0.01) = 0.1f1(0.01), f2(0.11) = f1(0.1) +
0.1(f1(0.11)−f1(0.1)) and f2 is linear in all four intervals [0, 0.01], [0.01, 0.1], [0.1, 0.11]
and [0.11, 1] (actually, f2 is linear in [0.01, 0.11], so the graph of f2 consists of three
line segments). Repeating this procedure, we get strictly increasing, piecewise linear,
continuous functions fn’s. Note that

(5.1) 0 < · · · ≤ fn+1(x) ≤ fn(x) ≤ · · · ≤ f1(x) ≤ f0(x) = x,

and thus fn(x) converges for all x ∈ [0, 1]. If we define a function F on [0, 1] by

F (x) = lim
n→∞ fn(x), for all x ∈ [0, 1],

then F is continuous because {fn} is a uniformly converging sequence.a)

Lemma 6. F ≡ f .

Proof. First, we show that for any natural number k and any element (r1, . . . , rk), ri ∈
{0, 1},

F (0.r1r2 . . . rk) = F (0.r1 . . . rk−1) + rk(0.1)k+nk0+1(1.1)nk1−1

a)This geometric constuction is exactly the same as the method of performing the transform
T (1/4, 3/4) that R. Salem used in his paper [5]. H. Okamoto had also generalized Salem’s method
in his paper [3] and [4] to obtain more singular functions and continuous nowhere differntiable
functions.
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and

F (0.r1r2 . . . rk) =
m∑

i=1

ri(0.1)2i+1−ni1(1.1)−1+ni1 ,

where nk1 =
∑k

i=1 ri and nk0 = k − nk1. This is obviously true for k = 1. If we
assume that this holds for all k ≤ m, then

F (0.r1r2 . . . rm) =fm(0.r1r2 . . . rm)

=fm−1(0.r1 . . . rm−1) + rm(0.1)m+nm0+1(1.1)nm1−1

=fm−1(0.r1 . . . rm−1) + rm(0.1)2m+1−nm1(1.1)nm1−1

=
m∑

i=1

ri(0.1)2i+1−ni1(1.1)−1+ni1

And from the definition of F we see

F (0.r1r2 . . . rm+1) = fm+1(0.r1r2 . . . rm+1)

=fm(0.r1 . . . rm) + (0.1)rm+1(fm(0.r1 . . . rm + (0.1)m+1)− fm(0.r1 . . . rm)).

We may assume rm+1 = 1 . Since the slope of fm in the interval

(0.r1 . . . rm, 0.r1 . . . rmrm+1) = (0.r1 . . . rm, 0.r1 . . . rm1)

is (0.1)nm,0(1.1)nm,1 = (0.1)nm+1,0(1.1)nm+1,1−1, we get

F (0.r1r2 . . . rm+1) =fm(0.r1 . . . rm) + (0.1)rm+1(fm(0.r1 . . . rm+1)− fm(0.r1 . . . rm))

=fm(0.r1 . . . rm) + (0.1)rm+1(0.1)m+1(0.1)nm+1,0(1.1)nm+1,1−1

=fm(0.r1 . . . rm) + rm+1(0.1)(m+1)+nm+1,0+1(1.1)nm+1,1−1

=
m+1∑

i=1

ri(0.1)2i+1−ni1(1.1)−1+ni1 ,

which proves our claim and implies

F (0.r1r2 . . . rk) = f(0.r1r2 . . . rk).

For an arbitrary point r = 0.r1r2 . . . in [0, 1], we consider the increasing sequence
{r(k) = 0.r1 . . . rk} converging to r. Since F is continuous,

F (0.r1r2 . . . ) = lim
k→∞

F (0.r1r2 . . . rk)

= lim
k→∞

k∑

i=1

ri(0.1)2i+1−ni1(1.1)−1+ni1
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=
∞∑

i=1

ri(0.1)2i+1−ni1(1.1)−1+ni1

=f(0.r1r2 . . . )

¤

Corollary 7. f is a strictly increasing continuous function.

6. Differentiability of f at Rational Numbers

In this section, we’ll investigate the differentiability of f at rational numbers.
Each rational number r in [0, 1] has an infinite binary expansion r = 0.s1 . . . skṙ1 . . . ṙl.
If we denote the number of 1’s in {r1, . . . , rl} and 0’s by n1 and n0 respectively, that
is, n1 =

∑l
i=1 ri and n0 = l − n1, then we get a number D(r) = (0.1)n0(1.1)n1 .

For example, D(r) = 1.1 > 1 for any rational number r which has a finite binary
expansion, since 0.r1 . . . rk = 0.r1, . . . , rk−101̇ .

We’ll see in this section that the number D(r) is closely related to the differen-
tiability of f at r. Actually we’ll prove the following.

Theorem 8. For a rational number r, f is differentiable at r if and only if D(r) < 1.
Furthermore, f ′(r) = 0 if exists.

6.1. Differentiability at r = 0.r1 . . . rk We can see immediately from the geo-
metric construction of f that f is not differentiable at rational numbers which have
finite binary expansions, that is, f has singular points at those points.

Lemma 9. If r is a rational number with a finite binary expansion, f is not differ-
entiable at r.

Proof. Let r = 0.r1, . . . , rk be the shortest finite binary expression of r. Then rk

must be 1 and

r = 0.r1, . . . , rk−101̇.

Consider the following sequences r+(n) and r−(n) converging to r : r+(n) is an
increasing sequence defined as

r+(1) =0.r1, . . . , rk1

r+(2) =0.r1, . . . , rk01

r+(3) =0.r1, . . . , rk001
. . .
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and r−(n) is a decreasing sequence defined as

r−(1) =0.r1, . . . , rk−101

r−(2) =0.r1, . . . , rk−1011

r−(3) =0.r1, . . . , rk−10111
. . .

Then
f(r)− f(r+(n))

r − r+(n)
=

(0.1)2(k+n)+1−(n1+1)(1.1)−1+n(1+1)

(0.1)k+n

=(0.1)k+n−n1(1.1)n1 = (0.1)n0(1.1)n1(0.1)n

and
f(r)− f(r−(n))

r − r−(n)

=
(0.1)2k+1−n1(1.1)−1+n1 −∑n

i=1(0.1)2(k+i)+1−(n1+i−1)(1.1)−1+(n1+i−1)

(0.1)k+n

=
(0.1)2k+1−n1(1.1)−1+n1(1− 0.1

1.1

∑n
i=1(0.1)i(1.1)i)

(0.1)k+n

=(0.1)k+1−n1(1.1)−1+n1(1.1)n.

Therefore

lim
n→∞

f(r)− f(r+(n))
r − r+(n)

= 0, lim
n→∞

f(r)− f(r−(n))
r − r−(n)

= ∞,

and thus f is not differentiable at r. ¤

6.2. For each real number r = 0.r1r2r3 . . . in [0, 1], we get a sequence {ak(r) =
(0.1)nk0(1.1)nk1}. Note that for a rational number r = 0.s1 . . . skṙ1 . . . ṙl . . . ,

D(r) =
ak+l(r)
ak(r)

=
ak+2l(r)
ak+l(r)

=
ak+3l(r)
ak+2l(r)

= . . .

and

D(r)n =
ak+nl(r)
ak(r)

=
ak+(n+m)l(r)

ak+ml(r)
.

Lemma 10. (i) f is differentiable at r if and only if f is differentiable at
(0.1)kr and f ′((0.1)kr) = (0.1)kf ′(r),

(ii) If two rational numbers z = 0.z1z2 . . . and r = 0.r1r2 . . . ∈ [0, 1] have the
same first k digits, that is, z1 = r1, z2 = r2, . . . , zk = rk, then

f(r)− f(z)
r − z

= ak(r)
f(0.rk+1rk+2 . . . )− f(0.zk+1zk+2 . . . )

0.rk+1rk+2 · · · − 0.zk+1zk+2 . . .
.
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(iii) f is differentiable at r = 0.r1r2 . . . if and only if f is differentiable at
0.rk+1rk+2 . . . and

f ′(r) = ak(r)f ′(0.rk+1rk+2 . . . ).

Proof. (i)

f((0.1)kr + h)− f((0.1)kr)
h

=
f((0.1)kr + (0.1)kh′)− f((0.1)kr)

(0.1)kh′

=
(0.1)2k[f(r + h′)− f(r)]

(0.1)kh′

=(0.1)k f(r + h′)− f(r)
h′

,

where h′ = 10kh.
(ii) For any z = 0.z1z2 · · · ∈ [0, 1] such that

z1 = r1, z2 = r2, . . . , zk = rk,

we get

f(r)− f(z)
r − z

=
(0.1)2k−nk1(1.1)nk1 [f(0.rk+1rk+2 . . . )− f(0.zk+1zk+2 . . . )]

(0.1)k[0.rk+1rk+2 · · · − 0.zk+1zk+2 . . . ]

=(0.1)nk0(1.1)nk1
f(0.rk+1rk+2 . . . )− f(0.zk+1zk+2 . . . )

0.rk+1rk+2 · · · − 0.zk+1zk+2 . . .

=ak(r)
f(0.rk+1rk+2 . . . )− f(0.zk+1zk+2 . . . )

0.rk+1rk+2 · · · − 0.zk+1zk+2 . . .
.

(iii) Suppose {z′(n) = 0.zn,k+1zn,k+2 . . . } is an arbitrary sequence of real num-
bers in [0, 1] which converges to 0.rk+1rk+2rk+3 . . . . Then the sequence

{z(n) = 0.r1r2 . . . rkzn,k+1zn,k+2 · · · = 0.r1r2 . . . rk + (0.1)kz′(n)}

converges to r, and by (ii)

f(r)− f(z(n))
r − z(n)

= ak(r)
f(0.rk+1rk+2 . . . )− f(z′(n))

0.rk+1rk+2 · · · − z′(n)
.

So if if f is differntiable at r, then f is differntiable at 0.rk+1rk+2rk+3 . . .

and f ′(0.rk+1rk+2 . . . ) = 1
ak(r)f

′(r).
Conversely, if f is differntiable at 0.rk+1rk+2rk+3 . . . and z(n) = 0.zn,1zn,2 . . .

is an arbitrary sequence converging to r, then there is a natural number t
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such that

zn,1 = r1, zn,2 = r2, . . . , zn,k = rk, for all n > t.

So we get

f ′(r) = lim
n→∞

f(r)− f(z(n))
r − z(n)

=ak(r) lim
n→∞

f(0.rk+1rk+2 . . . )− f(0.zn,k+1zn,k+2 . . . )
0.rk+1rk+2 · · · − 0.zn,k+1zn,k+2 . . .

=ak(r)f ′(0.rk+1rk+2 . . . ).

¤

6.3. Differentiability at r = 0.ṙ1 . . . ṙl Given a rational number r = 0.ṙ1 . . . ṙl,
we define r(nl) as follows:

r(l) = 0.r1 . . . rl

r(2l) = 0.r1 . . . rlr1 . . . rl

r(3l) = 0.r1 . . . rlr1 . . . rlr1 . . . rl

. . .

r(nl) = 0.r1 . . . rlr1 . . . rlr1 . . . rl . . . r1 . . . rl(n times)

. . .

By Lemma 10, we see that if f is differentiable at a rational number r = 0.ṙ1 . . . ṙl,
then

f ′(r) =f ′(0.ṙ1 . . . ṙl)

=D(r)f ′(0.ṙ1 . . . ṙl)

=D(r)2f ′(0.ṙ1 . . . ṙl)

= . . .

=D(r)nf ′(0.ṙ1 . . . ṙl) = D(r)nf ′(r),

which implies f ′(r) = 0 because D(r) cannot be 1. Actually we can prove

Lemma 11. For any rational number r = 0.ṙ1 . . . ṙl, the following is true:
(i) f(r)−f(r(nl))

r−r(nl) = D(r)n f(r)
r ,

(ii) if f is differentiable at r, then D(r) < 1 and f ′(r) = 0,
(iii) if D(r) < 1, then f is differentiable at r and f ′(r) = 0.

Proof. (i) Since anl(r) = D(r)n, this is immediate from (ii) of Lemma 10.
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(ii) By (i), if f is differentiable at r, then the sequence {D(r)n} must converge
and

f ′(r) = lim
n→∞

f(r)− f(r(nl))
r − r(nl)

=
f(r)

r
lim

n→∞D(r)n,

which implies D(r) < 1 and f ′(r) = 0 because D(r) = (0.1)n0(1.1)n1 cannot
be 1.

(iii) If {bk} is any increasing sequence converging to r, then we can find a se-
quence {nk} of natural numbers satisfying the following:

r(nkl) ≤ bk < r((nk + 1)l) < r, lim
k→∞

nk = ∞.

Now we see

0 ≤ f(r)− f(bk)
r − bk

≤f(r)− f(r(nkl))
r − r((nk + 1)l)

=
f(r)− f(r(nkl))

r − r(nkl)
r − r(nkl)

r − r((nk + 1)l)

=D(r)nk
f(r)

r

(0.1)nklr

(0.1)(nk+1)lr

=10l f(r)
r

D(r)nk .

Therefore limk→∞
f(r)−f(bk)

r−bk
= 0 and thus the left derivative of f at r exists

and should be 0 if D(r) < 1.
To caculate the right derivative of f at r, suppose that {dk} is a decreasing

sequence converging to r. Then there is a sequence {nk} of natural numbers
satisfying the following:

r((nk + 1)l) + (0.1)(nk+1)l ≤ dk < r(nkl) + (0.1)nkl, lim
k→∞

nk = ∞.

In fact, this inequality holds when the first nkl digits of dk and r are identical
and (nk + 1)l digits are not the same. So we get

d′k = 10nkl(dk − r(nkl)) ≥ r(l) + (0.1)l,

and

|r − d′k| ≥ r(l) + (0.1)l − r

=(0.1)l − (0.1)lr

=(0.1)l(1− r).
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Using this inequality and (ii) of Lemma 10, we get

|f(r)− f(dk)
r − dk

| =D(r)nk |f(r)− f(d′k)
r − d′k

|

≤10lD(r)nk

1− r
|f(r)− f(d′k)|

=
10l

1− r
D(r)nk ,

which implies that the right derivative of f at r exists and should be 0 if
D(r) < 1.

¤

6.4. Differentiability at z = 0.s1 . . . skṙ1 . . . ṙl The lemma below completes the
proof of Theorem 8.

Lemma 12. For any rational number z = 0.s1 . . . skṙ1 . . . ṙl, the following is true:

(i) f is differentiable at z if and only if D(z) = (0.1)n0(1.1)n1 < 1,
(ii) f ′(z) = 0 if exists.

Proof. By Lemma 10, we see that f is differentiable at z if and only if f is differen-
tiable at r = 0.ṙ1 . . . ṙl and

f ′(0.s1 . . . skṙ1 . . . ṙl) = ak(z)f ′(0.ṙ1 . . . ṙl).

We also see by Lemma 11 that D(r) < 1 if and only if f is differentiable at r and
f ′(r) = 0 if exists. Therefore f ′(z) = 0 if f is differentiable at z and the following
three are equivalent :

(1) f is differentiable at z = 0.s1 . . . skṙ1 . . . ṙl,
(2) f is differentiable at r = 0.ṙ1 . . . ṙl,
(3) D(z) = D(r) < 1.

This proves (i) and (ii). ¤

7. f is singular

In this section, we’ll show that f is a singular function.

Definition 13. For x ∈ [0, 1], we say that x is called simply normal (to the base
2) if both 0 and 1 appear with the same asymptotic frequency 1

2 , that is,

lim
k→∞

nk0

k
=

1
2
, and lim

k→∞
nk1

k
=

1
2
.
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It is well-known that the set of simply normal numbers in [0, 1] has full measure
(see [2].)

Define three subsets of [0, 1], E1, E2 and E as follows :

E ={x ∈ [0, 1] | f is differentiable at x},
E1 ={x ∈ [0, 1] | f is differentiable at x and lim

k→∞
ak(r) = 0},

E2 ={x ∈ [0, 1] | f is differentiable at x and x is simply normal }.
Then E2 ⊂ E1 ⊂ E, since

ak(r) = (0.1)nk0(1.1)nk1 = ((0.1)
nk0

k (1.1)
nk1

k )k,

and thus E, E1 and E2 have all full measure, since f is strictly increasing.

Theorem 14. f is a continuous strictly increasing singular function with f ′(x) = 0
for all x ∈ E1.

Proof. Consider the sequence r(k) = 0.r1r2r3 . . . rk for a real number r = 0.r1r2r3 . . . .
By Lemma 3,

f(r)− f(r(k)) =(0.1)−nk1(1.1)nk1f((0.1)k0.rk+1rk+2 . . . )

=(0.1)2k−nk1(1.1)nk1f(0.rk+1rk+2 . . . )

and

f(r)− f(r(k))
r − r(k)

=
(0.1)2k−nk1(1.1)nk1f(0.rk+1rk+2 . . . )

(0.1)k0.rk+1rk+2 . . .

=(0.1)nk0(1.1)nk1
f(0.rk+1rk+2 . . . )

0.rk+1rk+2 . . .

=ak(r)
f(0.rk+1rk+2 . . . )

0.rk+1rk+2 . . .

Since f(z) ≤ z for all real number z ∈ [0, 1], we get an inequality,

0 ≤ f(r)− f(r(k))
r − r(k)

≤ ak(r),

and this implies that if f is differentiable at r then 0 ≤ f ′(r) ≤ limk→∞ ak(r).
Therefore f ′(r) = 0 for all r ∈ E1 and thus f is a singular function, which completes
the proof.

¤
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