DOI QR코드

DOI QR Code

Magnetic Properties and Impedance Spectroscopic Studies of Multiferroic Bi1-xNdxFeO3 Materials

  • Thang, Dao Viet (Center for Nano Science and Technology, Hanoi National University of Education) ;
  • Thao, Du Thi Xuan (Department of Physics, Hanoi University of Mining and Geology) ;
  • Minh, Nguyen Van (Center for Nano Science and Technology, Hanoi National University of Education)
  • Received : 2015.07.22
  • Accepted : 2015.12.22
  • Published : 2016.03.31

Abstract

Nd-doped $BiFeO_3$ materials were synthesized via a sol-gel method. The crystal structure, magnetic properties, and complex impedance spectroscopy of multiferroic $Bi_{1-x}Nd_xFeO_3$ (BNFO) materials were investigated by X-ray diffraction (XRD), Raman scattering, vibrating sample magnetometer (VSM), and complex impedance spectroscopy. Our results show that the lattice crystal constants (a, c) and the ratio c/a of BNFO materials decreased with increasing Nd concentration. All samples exhibited weak ferromagnetism at room temperature, and the magnetization of samples was enhanced by the presence of $Nd^{3+}$ ions. There was an enhancement in the spontaneous magnetization of BFO with increasing Nd concentration, which is attributable to the collapse of the spin cycloid structure.

Keywords

References

  1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023
  2. S. T. Zhang, Y. Zhang, M. H. Lu, C. L. Du, Y. F. Chen, Z. G. Liu, Y. Y. Zhu, N. B. Ming, and X. Q. Pan, Appl. Phys. Lett. 88, 162901 (2006). https://doi.org/10.1063/1.2195927
  3. S. R. Das, R. N. P. Choudhary, P. Bhattachary, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, J. Appl. Phys. 101, 034104 (2007). https://doi.org/10.1063/1.2432869
  4. K. S. Nalwa, A. Garg, and A. Upadhyaya, Mater. Lett. 62, 878 (2008). https://doi.org/10.1016/j.matlet.2007.07.002
  5. G. L. Yuan and S. W. Or, J. Appl. Phys. 100, 024109 (2006). https://doi.org/10.1063/1.2220642
  6. G. L. Yuan, S. W. Or, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett. 89, 052905 (2006). https://doi.org/10.1063/1.2266992
  7. Z.-L. Hou, H.-F. Zhou, J. Yuan, Y.-Q. Kang, H.-J. Yang, H.-B. Jin, and M.-S. Cao, Chinese Phys. Lett. 28, 037702 (2011). https://doi.org/10.1088/0256-307X/28/3/037702
  8. V. V. Lazenka, G. Zhang, J. Vanacken, I. I. Makoed, A. F. Ravinski, and V. V. Moshchalkov, J. Phys. D: Appl. Phys. 45, 125002 (2012). https://doi.org/10.1088/0022-3727/45/12/125002
  9. P. Suresh and S. Srinath, Physica B. 448, 281 (2014). https://doi.org/10.1016/j.physb.2014.03.040
  10. A. Manzoor, S. K. Hasanain, A. Mumtaz, M. F. Bertino, and L. Franzel, J. Nanopart. Res. 14, 1310 (2012). https://doi.org/10.1007/s11051-012-1310-x
  11. A. Gaur, P. Singh, N. Choudhary, D. Kumar, M. Shariq, K. Singh, N. Kaur, and D. Kaur, Physica B. 406, 1877 (2011). https://doi.org/10.1016/j.physb.2011.02.046
  12. A. Gautam, K. Singh, K. Sen, R. K. Kotnala, and M. Singh, Mater. Lett. 65, 591 (2011). https://doi.org/10.1016/j.matlet.2010.11.002
  13. J. Deng, S. Banerjee, S. K. Mohapatra, Y. R. Smith, and M. Misra, J. Fundamentals of Renewable Energy and Applications 1, 1 (2011).
  14. M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, Appl. Phys. Lett. 88, 042907 (2006). https://doi.org/10.1063/1.2168038
  15. H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Magn. Magn. Mater. 310, 367 (2007). https://doi.org/10.1016/j.jmmm.2006.10.282
  16. M. Kumarn, P. C. Sati, S. Chhoker, and V. Sajal, Ceram. Int. 41, 777 (2015). https://doi.org/10.1016/j.ceramint.2014.09.002
  17. Y. Yang, J. Y. Sun, K. Zhu, Y. L. Liu, and L. Wan, J. Appl. Phys. 103, 093532 (2008). https://doi.org/10.1063/1.2913198
  18. M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl. Phys. Lett. 91, 071910 (2007). https://doi.org/10.1063/1.2771380
  19. G. L. Yuan, S. W. Or, and H. L. Chan, J. Appl. Phys. 101, 064101 (2007). https://doi.org/10.1063/1.2433709
  20. A. Z. Simoes, L. S. Cavalcante, F. Moura, E. Longo, and J. A. Varela, J. Alloys Compd. 509, 5326 (2011). https://doi.org/10.1016/j.jallcom.2011.02.030
  21. M. Kumar, K. L. Yadav, and G. D. Varma, Mater. Lett. 62, 1159 (2008). https://doi.org/10.1016/j.matlet.2007.07.075
  22. J. Wei, D. Xue, and Y. Xu, Scripta Mater. 58, 45 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.001
  23. Z. Liu, Y. Qi, and C. Lu, J. Mater. Sci. Mater. Electron. 21, 380 (2010). https://doi.org/10.1007/s10854-009-9928-x
  24. J. Wang, A. Scholl, H. Zheng, S. B. Ogale, D. Viehland, D. G. Schlom, N. A. Spaldin, K. M. Rabe, M. Wuttig, L. Mohaddes, J. Neaton, U. Waghmare, T. Zhao, and R. Ramesh, Science 307, 1203 (2005).
  25. A. K. Behera, N. K. Mohanty, S. K. Satpathy, B. Behera, and P. Nayak, Central European Journal of Physics 12, 851 (2014). https://doi.org/10.2478/s11532-014-0508-4
  26. N. V. Minh and D. V. Thang, J. Alloys Compd. 505, 619 (2010). https://doi.org/10.1016/j.jallcom.2010.06.093