DOI QR코드

DOI QR Code

Magnetic Properties of Helicobacter Pylori Ferritins Genetically Prepared Under Different Biomineralization Conditions

  • Son, K. (Department of Physics, Kookmin University) ;
  • Park, J.N. (Department of Physics, Kookmin University) ;
  • Yoon, Sungwon (Department of Physics, The Catholic University of Korea) ;
  • Suh, B.J. (Department of Physics, The Catholic University of Korea) ;
  • Cho, K.J. (Department of Life Sciences & Biotechnology, Korea University) ;
  • Kim, K.H. (Department of Biotechnology & Bioinformatics, Korea University) ;
  • Jang, Z.H. (Department of Physics, Kookmin University)
  • 투고 : 2015.12.20
  • 심사 : 2016.01.11
  • 발행 : 2016.03.31

초록

Magnetic properties of bio-magnetic molecule ferritin have been investigated. Two ferritin samples were synthesized under different magnetic fields, 0 and 9.4 T, respectively. This work is focused on the influence of magnetic field on biomineralization process. While magnetization vs. temperature (M-T) data of both samples measured at 1000 Oe are almost identical except for low temperature region (T < 6 K), magnetization vs. field (M-H) data show noticeable difference. From an analysis of M-H data by using a modified Langevin function, we could extract the saturation magnetization $m_0$(T), the effective magnetic moment ${\mu}_{eff}$(T) and the linear susceptibility x(T). The difference between the samples is most prominent in the x(T), whereby the x(T) of the sample prepared at 9.4 T is 1.7 times bigger than that of the other. In addition, from hysteresis and relaxation measurements, we found the sample prepared at 9.4 T showed strikingly smaller coercivity and slower relaxation.

키워드

참고문헌

  1. A. Ethirajan, U. Wiedwald, H.-G. Boyen, B. Kern, L. Han, A. Klimmer, F. Weigl, G. Kastle, P. Ziemann, K. Fauth, J. Cai, R. Jurgen Behm, A. Romanyuk, P. Oelhafen, P. Walther, J. Biskupek, and U. Kaiser, Adv. Mate. 19, 406 (2007). https://doi.org/10.1002/adma.200601759
  2. A. Jordan, R. Scholz, P. Wust, H. Fahling, and R. Felix, J. Magn. Magn. Mater. 210, 413 (1999).
  3. C. Gilles, P. Bonville, H. Rakoto, J. M. Broto, K. K. W. Wong, and S. Mann, J. Magn. Magn. Mater. 241, 430 (2002). https://doi.org/10.1016/S0304-8853(01)00461-9
  4. N. D. Chasteen and P. M. Harrison, J. Struct. Biol. 120, 182 (1999).
  5. N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B 71, 184408 (2005). https://doi.org/10.1103/PhysRevB.71.184408
  6. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, 14717 (1997). https://doi.org/10.1103/PhysRevB.55.R14717
  7. William H. Massover, Micron 24, 389 (1993). https://doi.org/10.1016/0968-4328(93)90005-L
  8. M. S. Seehra and A. Punnoose, Phys. Rev. B 64, 132410 (2001). https://doi.org/10.1103/PhysRevB.64.132410
  9. M. S. Seehra, V. S. Babu, A. Manivannan, and J. W. Lynn, Phys. Rev. B 61, 3513 (2000). https://doi.org/10.1103/PhysRevB.61.3513
  10. E. R. Bauminger and I. Nowik, Hyperfine interactions 50, 489 (1989). https://doi.org/10.1007/BF02407681
  11. M. M. Ibrahim, S. Darwish, and M. S. Seehra, Phys. Rev. B 51, 2955 (1995).