DOI QR코드

DOI QR Code

The Half-metallic Properties of (001) and (110) Surfaces of CsSe from the First-principles

  • Received : 2016.01.08
  • Accepted : 2016.02.18
  • Published : 2016.03.31

Abstract

We investigated the half-metallicity and magnetism at the (001) and (110) surfaces of CsSe in cesium chloride and zinc-blende structures by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. From the calculated local density of states, we found that all the surfaces preserve the half-metallicity of the bulk structures. The surfaces with a greater polarity have stronger ferromagnetic properties when terminated with Se atoms; the non-polar surfaces do not change their electronic or magnetic properties considerably as compared with the bulk structures.

Keywords

References

  1. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Bushow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  2. Van A. Dinh, K. Sato, and H. K. Yoshida, J. Comput. Theor. Nanos. 6 2589 (2009). https://doi.org/10.1166/jctn.2009.1319
  3. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430, 630 (2004). https://doi.org/10.1038/430630a
  4. G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2007). https://doi.org/10.1103/PhysRevB.75.174442
  5. G. Y. Gao and K. L. Yao, J. Appl. Phys. 106, 053703 (2009). https://doi.org/10.1063/1.3211863
  6. G. Y. Gao and K. L. Yao, Appl. Phys. Lett. 91, 082512 (2007). https://doi.org/10.1063/1.2775081
  7. Q. S. Shao and H. Zhao, J. Supercond. Nov. Magn. 25, 2063 (2012). https://doi.org/10.1007/s10948-012-1565-6
  8. G. Y. Gao, K. L. Yao; Z. L. Liu, J. L. Jiang, L. H. Yu, and Y. L. Shi, J. Phys.: Condens. Matt. 19, 315222 (2007). https://doi.org/10.1088/0953-8984/19/31/315222
  9. H. Rozale, A. Lakdja, A. Amar, A. Chahed, and O. Benhelal, Comp. Mater. Sci. 69, 229 (2013). https://doi.org/10.1016/j.commatsci.2012.12.002
  10. J. Chen, G. Y. Gao, K. L. Lao, and M. H. Song, J. Alloys Compd. 509, 10172 (2011). https://doi.org/10.1016/j.jallcom.2011.08.083
  11. M. Karaca, S. Kervan, and N. Kervan, J. Alloys Compd. 639, 162 (2015). https://doi.org/10.1016/j.jallcom.2015.03.164
  12. B. Bialek and J. I. Lee, J. Magn. 20, 1 (2015). https://doi.org/10.4283/JMAG.2015.20.1.001
  13. B. Bialek, J. I. Lee, and M. Kim, Comp. Mater. Sci. 81, 510 (2014). https://doi.org/10.1016/j.commatsci.2013.08.061
  14. B. Bialek and J. I. Lee, J. Magn. 18, 375 (2013). https://doi.org/10.4283/JMAG.2013.18.4.375
  15. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  16. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 6864 (1981)
  17. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

Cited by

  1. Computational and physical aspects of MHD Prandtl-Eyring fluid flow analysis over a stretching sheet pp.1433-3058, 2017, https://doi.org/10.1007/s00521-017-3017-5
  2. Numerical investigation on 2D viscoelastic fluid due to exponentially stretching surface with magnetic effects: an application of non-Fourier flux theory pp.1433-3058, 2017, https://doi.org/10.1007/s00521-016-2832-4