DOI QR코드

DOI QR Code

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar (Ecole Nationale d'Ingenieur de Monastir, Universite de Monastir) ;
  • Orfi, Jamel (Department of Mechanical Engineering, College of Engineering, King Saud University)
  • 투고 : 2015.09.01
  • 심사 : 2015.12.18
  • 발행 : 2016.01.25

초록

The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

키워드

과제정보

연구 과제 주관 기관 : King Saud University

참고문헌

  1. Alklaibi, A.M. and Lior, N. (2005), "Transport analysis of air gap membrane distillation", J. Membr. Sci., 255(1-2), 239-253. https://doi.org/10.1016/j.memsci.2005.01.038
  2. Amali, A.E., Bouguecha, S. and Maalej, M. (2004), "Experimental study of air gap and direct contact membrane distillation configurations: application to geothermal and seawater desalination", Desalination, 168, 357. https://doi.org/10.1016/j.desal.2004.07.020
  3. Bejan, A. (2004), Convective Heat Transfer, (3rd Edition), Wiley et Sons, NJ, USA.
  4. Banat, F. and Simandl, J. (1998), "Desalination by membrane distillation: A parametric study", Sep. Sci. Technol., 33(1), 201-226. https://doi.org/10.1080/01496399808544764
  5. Banat, F. (1994), "Membrane distillation for desalination and removal of volatile organic compounds from water", Ph.D. Dissertation; McGill University, Montreal, Canada.
  6. Banat, F. and Simandl, J. (1994), "Theoretical and experimental study in membrane distillation", Desalination, 95(1), 39-52. https://doi.org/10.1016/0011-9164(94)00005-0
  7. Chang, H., Tsai, C., Wei, H. and Cheng, L. (2014), "Effect of structure of PVDF membranes on the performance of membrane distillation", Membr. Water Treat., Int. J., 5(1), 41-56. https://doi.org/10.12989/mwt.2014.5.1.041
  8. Charfi, K., Khayet, M. and Safi, M.J. (2010), "Numerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation", Desalination, 259(1-3), 84-96. https://doi.org/10.1016/j.desal.2010.04.028
  9. Chen, K.K., Xiao, C.F., Huang, Q.L., Liu, H., Liu, H.L., Wu, Y.J. and Liu, Z. (2015), "Study on vacuum membrane distillation (VMD) using FEP hollow fiber membrane", Desalination, 375(2), 24-32. https://doi.org/10.1016/j.desal.2015.07.021
  10. Christensen, K., Andresena, R., Tandskov, I., Norddahl, B. and Preez, J.H. (2006), "Using direct contact membrane distillation for whey protein concentration", Desalination, 200(1-3), 523-525. https://doi.org/10.1016/j.desal.2006.03.421
  11. Ding, Z., Liu, L., Li, Z., Ma, R. and Yang, Z. (2006), "Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations", J. Membr. Sci., 286(1-2), 93-103. https://doi.org/10.1016/j.memsci.2006.09.015
  12. El-Bourawi, M.S., Ding, Z.M, Ma, R. and Khayat, M. (2006), "Framework for better understanding membrane distillation separation process", J. Membr. Sci., 285(1-2), 4-29. https://doi.org/10.1016/j.memsci.2006.08.002
  13. Feng, C., Khulbe, K.C., Matsuura, T., Gopal, R., Kaur, S., Ramakrishna, S. and Khayet, M. (2008), "Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane", J. Membr. Sci., 311(1-2), 1-6. https://doi.org/10.1016/j.memsci.2007.12.026
  14. Gabor, R., Steffen. K., Oliver. S., Benjamin. S., Zoltan, K., Gyula, V., Mehrdad, E. and Peter, C. (2015), "Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters" Membr. Water Treat., Int. J., 6(3), 237-249. https://doi.org/10.12989/mwt.2015.6.3.237
  15. Garcia-Payo, M.C., Izquierdo-Gil, M.A. and Fernandez-Pineda, C. (2000), "Air gap membrane distillation of aqueous alcohol solutions", J. Membr. Sci., 169(1), 61-80. https://doi.org/10.1016/S0376-7388(99)00326-9
  16. Garcia-Payo, M.C., Rivier, C.A., Marison, I.W. and Von Stockar, U. (2002), "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions", J. Membr. Sci., 198(2), 197-210. https://doi.org/10.1016/S0376-7388(01)00649-4
  17. Gryta, M., Tomaszewska, M. and Morawski, A.W. (1997), "Membrane distillation with laminar flow", Sep. Purif. Technol., 11(2), 93-101. https://doi.org/10.1016/S1383-5866(97)00002-6
  18. Gryta, M., Tomaszewska, M. and Karakulski, K. (2006), "Wastewater treatment by membrane distillation", Desalination, 198(1-3), 67-73. https://doi.org/10.1016/j.desal.2006.09.010
  19. Guijt, C.M., Rcz, I.G., Van Heuven, J.W., Reith, T. and De Haan, A.B. (1999), "Modelling of a transmembrane evaporation module for desalination of seawater", Desalination, 126(1-3), 119-125. https://doi.org/10.1016/S0011-9164(99)00163-0
  20. Guijt, C.M., Meindersma, G., Reith, T. and De Haan, A. (2005) "Air gap membrane distillation: 2. Model validation and hollow performance analysis", Sep. Purif. Technol., 43(3), 245-255. https://doi.org/10.1016/j.seppur.2004.09.016
  21. Izquierdo-Gil, M.A., Garcia-Payo, M.C. and Fernandez-Pineda, C. (1999), "Air gap membrane distillation of sucrose aqueous solutions", J. Membr. Sci., 155 (2), 291-307. https://doi.org/10.1016/S0376-7388(98)00323-8
  22. Khayet, M., Godino, P. and Mengual, J.I. (2000a), "Nature of flow on sweeping gas membrane distillation", J. Membr. Sci., 170(2), 243-255. https://doi.org/10.1016/S0376-7388(99)00369-5
  23. Khayet, M., Godino, M.P. and Mengual, J.I. (2000b), "Theory and experiments on sweeping gas membrane distillation", J. Membr. Sci., 165(2), 261-272. https://doi.org/10.1016/S0376-7388(99)00236-7
  24. Khayet, M., Godino, M.P. and Mengual, J.I. (2003a), "Possibility of nuclear desalination through various membrane distillation configurations: A comparative study", Int. J. Nucl. Desalination, 1(1), 30-46. https://doi.org/10.1504/IJND.2003.003441
  25. Khayet, M., Godino, M.P. and Mengual, J.I. (2003b), "Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method", Desalination, 157(1-3), 297-305. https://doi.org/10.1016/S0011-9164(03)00409-0
  26. Khayet, M., Godino, M.P. and Mengual, J.I. (2002), "Thermal boundary layers in sweeping gas membrane distillation processes", Am. Inst. Chem. Eng. J. (AIChE J.), 48(7), 1488-1497. https://doi.org/10.1002/aic.690480713
  27. Loussif, N. and Orfi, J. (2014), "Effect of slip velocity on air gap membrane distillation process", Membr. Water Treat., Int. J., 5(1), 57-71. https://doi.org/10.12989/mwt.2014.5.1.057
  28. Phattaranawik, J., Jiraratananon, R. and Fane, A.G. (2003), "Heat transport and membrane distillation coefficients in direct contact membrane distillation", J. Membr. Sci., 212(1-2), 177-193. https://doi.org/10.1016/S0376-7388(02)00498-2
  29. Ramon, G., Agnon, Y. and Dosretz, C. (2009), "Heat transfer in vacuum membrane distillation: Effect of velocity slip", J. Membr. Sci., 331(1-2), 117-125. https://doi.org/10.1016/j.memsci.2009.01.022
  30. Rommel, M., Koschilowski, J. and Wighaous, M. (2007), Solar Desalination for the 21st Century, (Rizzuti et al.), The Netherlands.
  31. Schofield, R.W., Fane, A.G. and Fell, C.J.D. (1987), "Heat and mass transfer in membrane distillation", J. Membr. Sci., 33(3), 299-313. https://doi.org/10.1016/S0376-7388(00)80287-2
  32. Sebastian, R.K., Kujawski, W., Bukowska, M., Picard, C. and Larbot, A. (2006), "Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions", J.Membr. Sci., 281(1-2), 253-259. https://doi.org/10.1016/j.memsci.2006.03.039
  33. Shirazi, M.M.A., Kargari, A., Tabatabaei, M., Ismail, A.F. and Matsuura, T. (2014), "Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation", Chem. Eng. Process.: Process Intensif., 78, 58-66. https://doi.org/10.1016/j.cep.2014.02.002
  34. Song, L., Ma, Z., Liao, X., Kosarajua, P.B., Irish, J.R. and Sirkar, K.K. (2008), "Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination", J. Membr. Sci., 323(2), 257-270. https://doi.org/10.1016/j.memsci.2008.05.079
  35. Srisurichan, S., Jiraratananon, R. and Fane, A.G. (2006), "Mass transfer mechanisms and transport resistances in direct contact membrane distillation process", J. Membr. Sci., 277(1-2), 186-194. https://doi.org/10.1016/j.memsci.2005.10.028
  36. Tomaszewska, M., Gryta, M. and Morawski, A.W. (1995), "Study on the concentration of acids by membrane distillation", J. Membr. Sci., 102, 113-122. https://doi.org/10.1016/0376-7388(94)00281-3
  37. Versteeg, H.K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method, (2nd Edition), Pearson and Prentice Hall, England.
  38. Wu, C.R., Li, Z.G., Zhang, J.H., Jia, Y., Gao, Q. and Lu, X.L. (2015), "Study on the heat and mass transfer in air-bubbling enhanced vacuum membrane distillation", Desalination, 373, 16-26. https://doi.org/10.1016/j.desal.2015.07.001

피인용 문헌

  1. Arsenic removal from drinking water by direct contact membrane distillation vol.7, pp.3, 2016, https://doi.org/10.12989/mwt.2016.7.3.241
  2. Study on the heat and mass transfer in ultrasonic assisting vacuum membrane distillation vol.8, pp.3, 2016, https://doi.org/10.12989/mwt.2017.8.3.293
  3. PVDF/h-BN hybrid membranes and their application in desalination through AGMD vol.9, pp.4, 2016, https://doi.org/10.12989/mwt.2018.9.4.221
  4. Numerical study of desalination by Sweeping Gas Membrane Distillation vol.11, pp.5, 2020, https://doi.org/10.12989/mwt.2020.11.5.353
  5. Review of Transport Phenomena and Popular Modelling Approaches in Membrane Distillation vol.11, pp.2, 2021, https://doi.org/10.3390/membranes11020122