DOI QR코드

DOI QR Code

Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor

  • Palmarin, Matthew J. (Department of Environmental Systems Engineering, University of Regina) ;
  • Young, Stephanie (Department of Environmental Systems Engineering, University of Regina)
  • 투고 : 2014.11.03
  • 심사 : 2015.12.18
  • 발행 : 2016.01.25

초록

The characterization of treatment performance with respect to mixed liquor suspended solids (MLSS) concentration enables greater control over system performance and contaminant removal efficiency. Hybrid membrane bioreactors (HMBRs) have yet to be well characterized in this regard, particularly in the context of greywater treatment. The aim of this study, therefore, was to determine the optimal MLSS concentration for a decentralized HMBR greywater reclamation system under typical loading conditions. Treatment performance was measured at MLSS concentrations ranging from 1000 to 4000 mg/L. The treated effluent was characterized in terms of biochemical oxygen demand ($BOD_5$), chemical oxygen demand (COD), turbidity, ammonia ($NH_3$), total phosphorus (TP), total kjeldahl nitrogen (TKN), and total nitrogen (TN). An MLSS concentration ranging from 3000 to 4000 mg/L yielded optimal results, with $BOD_5$, COD, turbidity, $NH_3$, TP, TKN, and TN removals reaching 99.2%, 97.8%, 99.8%, 99.9%, 97.9%, 95.1%, and 44.8%, respectively. The corresponding food-to-microorganism ratio during these trials was approximately 0.23 to 0.28. Operation at an MLSS concentration of 1000 mg/L resulted in an irrecoverable loss of floc, and contaminant residuals exceeded typical guideline values for reuse in non-potable water applications. Therefore, it is suggested that operation at or below this threshold be avoided.

키워드

참고문헌

  1. Al-Jayyousi, O.R. (2003), "Greywater reuse: Towards sustainable water management", Desalination, 156(1-3), 181-192. https://doi.org/10.1016/S0011-9164(03)00340-0
  2. Ammari, T.G., Al-Zu'bi, Y., Al-Balawneh, A., Tahhan, R., Al-Dabbas, M., Ta'any, R.A. and Abu-Harb, R. (2014), "An evaluation of the re-circulated vertical flow bioreactor to recycle rural greywater for irrigation under arid Mediterranean bioclimate", Ecol. Eng., 70, 16-24. https://doi.org/10.1016/j.ecoleng.2014.03.009
  3. APHA (2005), Standard Methods for the Examination of Water and Wastewater, (21th Edition), American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C., USA.
  4. Artiga, P., Oyanedel, V., Garrido, J.M. and Mendez, R. (2005), "An innovative biofilm-suspended biomass hybird membrane bioreactor for wastewater treatment", Desalination, 179(1-3), 171-179. https://doi.org/10.1016/j.desal.2004.11.065
  5. Banaei, F.K., Zinatizadeh, A.A.L., Mesgar, M., Salari, Z. and Sumathi, S. (2013), "Effect of biomass concentration and aeration rate on performance of a full-scale industrial estate wastewater treatment plant", J. Environ. Chem. Eng., 1(4), 1144-1153. https://doi.org/10.1016/j.jece.2013.08.033
  6. Bieker, S., Cornel, P. and Wagner, M. (2010), "Semicentralised supply and treatment systems: integrated infrastructure solutions for fast growing urban areas", Water Sci. Technol., 11, 2905-2913.
  7. Delrue, F., Stricker, A.E., Mietton-Peuchot, M. and Racault, Y. (2011), "Relationship between mixed liquor properties, operating conditions and fouling on two full-scale MBR plants", Desalination, 272(1-3), 9-19. https://doi.org/10.1016/j.desal.2010.12.056
  8. Eriksson, E., Auffarth, K., Henze, M. and Ledin, A. (2002), "Characteristics of grey wastewater", Urban Water J., 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4
  9. Health Canada (2010), Canadian Guidelines for Domestic Reclaimed Water for Use in Toilet and Urinal Flushing, Minister of Health, Ottawa, ON, Canada.
  10. Katayon, S., Megat Mohd Noor, M.J., Ahmad, J., Abdul Ghani, L.A., Nagaoka, H. and Aya, H. (2004), "Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater", Desalination, 167, 153-158. https://doi.org/10.1016/j.desal.2004.06.124
  11. Kawasaki, K., Maruoka, S., Katagami, R., Bhatta, C.P., Omori, D. and Matsuda, A. (2011), "Effect of initial MLSS on operation of submerged membrane activated sludge process", Desalination, 281, 334-339. https://doi.org/10.1016/j.desal.2011.08.013
  12. Kumar, K., Singh, G.K., Dastidar, M.G. and Sreekrishnan, T.R. (2014), "Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater", Water Resour. Ind., 5, 1-8. https://doi.org/10.1016/j.wri.2014.01.001
  13. Laafat, J., Ouazzani, N. and Mandi, L. (2015), "The evaluation of potential purification of a horizontal subsurface flow constructed wetland treating greywater in semi-arid environment", Process Saf. Environ., 95, 86-92. https://doi.org/10.1016/j.psep.2015.02.016
  14. Lee, J., Ahn, W.-Y. and Lee, C.-H. (2001), "Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor", Water Res., 35(10), 2435-2445. https://doi.org/10.1016/S0043-1354(00)00524-8
  15. Lee, S. and Kim, M.-H. (2013), "Fouling characterisitics in pure oxygen MBR process according to MLSS concentration and COD loadings", J. Membrane Sci., 428, 323-330. https://doi.org/10.1016/j.memsci.2012.11.011
  16. Li, F., Wichmann, K. and Otterpohl, R. (2009), "Review of the technological approaches for grey water treatment and reuses", Sci. Total Environ., 407(11), 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
  17. Li, A.-j., Li, X.-y. and Yu, H.-q. (2011), "Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules", Process Biochem., 46(12), 2269-2276. https://doi.org/10.1016/j.procbio.2011.09.007
  18. Libralato, G., Ghirardini A.V. and Avezzu, F. (2012), "To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management", J. Environ. Manage., 94(1), 61-68. https://doi.org/10.1016/j.jenvman.2011.07.010
  19. Liu, Q., Wang, X.C., Liu, Y., Yuan, H. and Du, Y. (2010), "Performance of a hybrid membrane bioreactor in municipal wastewater treatment", Desalination, 258(1-3), 143-147. https://doi.org/10.1016/j.desal.2010.03.024
  20. Liu, Y., Liu, H., Cui, L. and Zhang, K. (2012), "The ratio of food-to-microorganism (F/M) on membrane fouling of anaerobic membrane bioreactors treating low-strength wastewater", Desalination, 297, 97-103. https://doi.org/10.1016/j.desal.2012.04.026
  21. Lobos, J., Wisniewski, C., Heran, M. and Grasmick, A. (2008), "Sequencing versus continuous membrane bioreactors: Effect of substrate to biomass ratio (F/M) on process performance", J. Membrane Sci., 317(1-2), 71-77. https://doi.org/10.1016/j.memsci.2007.08.041
  22. Lousada-Ferreira, M., Geilvoet, S., Moreau, A., Atasoy, E., Krzeminski, P., van Nieuwenhuijzen, A. and van der Graff, J. (2010), "MLSS concentration: Still a poorly understood parameter in MBR filterability", Desalination, 250(2), 618-622. https://doi.org/10.1016/j.desal.2009.09.036
  23. Mandal, D., Labhasetwar, P., Dhone, S., Dubey, A.S., Shinde, G. and Wate, S. (2011), "Water conservation due to greywater treatment and reuse in urban setting with specific context to developing countries", Resour. Conserv. Recy., 55(3), 356-361. https://doi.org/10.1016/j.resconrec.2010.11.001
  24. Mourad, K.A., Berndtsson, J.C. and Berndtsson, R. (2011), "Potential fresh water saving using greywater in toilet flushing in Syria", J. Environ. Manage., 92(10), 2447-2453. https://doi.org/10.1016/j.jenvman.2011.05.004
  25. Oron, G., Adel, M., Agmon, V., Friedler, E., Halperin, R., Leshem, E. and Weinberg, D. (2014), "Greywater use in Israel and worldwide: Standards and prospects", Water Res., 58, 92-101. https://doi.org/10.1016/j.watres.2014.03.032
  26. Ren, N., Chen, Z., Wang, A. and Hu, D. (2005), "Removal of organic pollutants and analysis of MLSS-COD removal relationship at different HRTs in a submerged membrane bioreactor", Int. Biodeter. Biodegr., 55(4), pp. 279-284. https://doi.org/10.1016/j.ibiod.2005.03.003
  27. Rodriguez, F.A., Reboleira-Rivas, P., Osorio, F., Martinez-Toledo, M.V., Hontoria, E. and Poyatos, J.M. (2012), "Influence of mixed liquid suspended solids and hydraulic retention time on oxygen transfer efficiency and viscosity in a submerged membrane bioreactor using pure oxygen to supply aerobic conditions", Biochemical Eng. J., 60, 135-141. https://doi.org/10.1016/j.bej.2011.10.016
  28. Trussell, R.S., Merlo, R.P., Hermanowicz, S.W. and Jenkins, D. (2007), "Influence of mixed liquor properties and aeration intensity on membrane fouling in a submerged membrane bioreactor at high mixed liquor suspended solids concentrations", Water Res., 41(5), 947-958. https://doi.org/10.1016/j.watres.2006.11.012
  29. Wintgens, T., Melin, T., Schafer, A., Khan, S., Muston, M., Bixio, D. and Thoeye, C. (2005), "The role of membrane processes in municipal wastewater reclamation and reuse", Desalination, 178(1-3), 1-11. https://doi.org/10.1016/j.desal.2004.12.014
  30. Wu, J. and Huang, X. (2009), "Effect of mixed liquor properties on fouling propensity in membrane bioreactors", J. Membrane Sci., 342(1-2), 88-96. https://doi.org/10.1016/j.memsci.2009.06.024
  31. Yang, S., Yang, F., Fu, Z. and Lei, R. (2009), "Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal", Bioresour. Technol., 100(8), 2369-2374. https://doi.org/10.1016/j.biortech.2008.11.022
  32. Yang, F., Wang, Y., Bick, A., Gilron, J., Brenner, A., Gillerman, L., Herzberg, M. and Oron, G. (2012), "Performance of different configurations of hybrid growth membrane bioreactor (HG-MBR) for treatment of mixed wastewater", Desalination, 284, 261-268. https://doi.org/10.1016/j.desal.2011.09.009
  33. Young, S. and Munoz, A. (2012), Moving Bed Membrane Bioreactor, International Patent No. WO 2012/019294 A1, World Intellectual Property Organization.
  34. Zhang, A., Liu, Z., Chen, Y., Kuschk, P. and Liu, Y. (2014), "Effects of EPS on membrane fouling in a hybrid membrane bioreactor for municipal wastewater treatment", Membr. Water Treat., Int. J., 5(1), 1-14. https://doi.org/10.12989/mwt.2014.5.1.001

피인용 문헌

  1. Adsorptive removal of Ni(II) ions from aqueous solution by PVDF/Gemini-ATP hybrid membrane vol.7, pp.3, 2016, https://doi.org/10.12989/mwt.2016.7.3.209
  2. Removal of acetic acid from wastewater by esterification in the membrane reactor vol.7, pp.2, 2016, https://doi.org/10.12989/mwt.2016.7.2.143
  3. Membrane fouling in thermophilic membrane bioreactor with different sludge retention times vol.9, pp.5, 2016, https://doi.org/10.12989/mwt.2018.9.5.343
  4. Reduced sludge production in a polyvinyl alcohol gel-based oxic-anoxic-oxic configured pilot-scale plant vol.4, pp.None, 2016, https://doi.org/10.1016/j.cscee.2021.100136