References
- Alba, M.M., and Pages, M. (1998). Plant proteins containing the RNA-recognition motif. Trends Plant Sci. 3, 15-21.
- Aliprandi, P., Sizun, C., Perez, J., Mareuil, F., Caputo, S., Leroy, J.- L., Odaert, B., Laalami, S., Uzan, M., and Bontems, F. (2008). S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNAprotein interactions: an NMR and SAXS analysis. J. Biol. Chem. 283, 13289-13301. https://doi.org/10.1074/jbc.M707111200
- Arthur, D.C., Ghetu, A.F., Gubbins, M.J., Edwards, R.A., Frost, L.S., and Glover, J.M. (2003). FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J. 22, 6346-6355. https://doi.org/10.1093/emboj/cdg607
- Asakura, Y., and Barkan, A. (2006). Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol. 142, 1656-1663. https://doi.org/10.1104/pp.106.088096
- Asakura, Y., and Barkan, A. (2007). A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19, 3864-3875. https://doi.org/10.1105/tpc.107.055160
- Asakura, Y., Bayraktar, O.A., and Barkan, A. (2008). Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts. RNA 14, 2319-2332. https://doi.org/10.1261/rna.1223708
- Asakura, Y., Galarneau, E., Watkins, K.P., Barkan, A., and van Wijk, K.J. (2012). Chloroplast RH3 DEAD Box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome riogenesis. Plant Physiol. 159, 961-974. https://doi.org/10.1104/pp.112.197525
- Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415-442. https://doi.org/10.1146/annurev-arplant-050213-040159
- Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y., and Watkins, K.P. (2007). The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA 13, 55-64.
- Brown, G.G., Colas des Francs-Small, C., and Ostersetzer-Biran, O. (2014). Group II intron splicing factors in plant mitochondria. Front. Plant Sci. 5, 35.
- Bycroft, M., Hubbard, T.J., Proctor, M., Freund, S.M., and Murzin, A.G. (1997). The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid–binding fold. Cell 88, 235-242. https://doi.org/10.1016/S0092-8674(00)81844-9
- del Campo, E.M. (2009). Post-transcriptional control of chloroplast gene expression. Gene Regul. Syst. Biol. 3, 31.
- Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D'Ordine, R., et al. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 147, 446-455. https://doi.org/10.1104/pp.108.118828
- Chaikam, V., and Karlson, D. (2008). Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ. 31, 995-1006. https://doi.org/10.1111/j.1365-3040.2008.01811.x
- Chaulk, S., Smith Frieday, M.N., Arthur, D.C., Culham, D.E., Edwards, R.A., Soo, P., Frost, L.S., Keates, R.A., Glover, J.M., and Wood, J.M. (2011). ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry 50, 3095-3106. https://doi.org/10.1021/bi101683a
- Chambers, J.R., and Bender, K.S. (2011). The RNA chaperone Hfq is important for growth and stress tolerance in Francisella novicida. PLoS One 6, e19797. https://doi.org/10.1371/journal.pone.0019797
- Chateigner-Boutin, A.L., des Francs-Small, C.C., Delannoy, E., Kahlau, S., Tanz, S.K., de Longevialle, A.F., Fujii, S., and Small, I. (2011). OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript rpoC1. Plant J. 65, 532-542. https://doi.org/10.1111/j.1365-313X.2010.04441.x
-
Chekanova, J.A., Dutko, J.A., Mian, I.S., and Belostotsky, D.A. (2002). Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′
$\rightarrow$ 5′ exonuclease containing S1 and KH RNAbinding domains. Nucleic Acids Res. 30, 695-700. https://doi.org/10.1093/nar/30.3.695 - Chi, W., He, B., Mao, J., Li, Q., Ma, J., Ji, D., Zou, M., and Zhang, L. (2012). The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol. 158, 693-707. https://doi.org/10.1104/pp.111.186775
- Choi, M.J., Park, Y.R., Park, S.J., and Kang, H. (2015). Stressresponsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. Plant Physiol. Biochem. 96, 132-140. https://doi.org/10.1016/j.plaphy.2015.07.027
- Cottage, A., Mott, E.K., Kempster, J.A., and Gray, J.C. (2010). The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J. Exp. Bot. 61, 3773-3786. https://doi.org/10.1093/jxb/erq186
- Delvillani, F., Papiani, G., Deho, G., and Briani, F. (2011). S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Res. 39, 7702-7715. https://doi.org/10.1093/nar/gkr417
- des Francs-Small, C.C., de Longevialle, A.F., Li, Y., Lowe, E., Tanz, S.K., Smith, C., Bevan, M.W., and Small, I. (2014). The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial Complex I. Plant Physiol. 165, 1409-1416. https://doi.org/10.1104/pp.114.244616
- Filipovska, A., and Rackham, O. (2012). Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol. Biosyst. 8, 699-708. https://doi.org/10.1039/c2mb05392f
- Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., and Menand, B. (2009). Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress. Int. J. Mol. Sci. 10, 3168-3185. https://doi.org/10.3390/ijms10073168
- Fusaro, A.F., Bocca, S.N., Ramos, R.L.B., Barroco, R.M., Magioli, C., Jorge, V.C., Coutinho, T.C., Rangel-Lima, C.M., De Rycke, R., and Inze, D. (2007). AtGRP2, a cold-induced nucleocytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225, 1339-1351. https://doi.org/10.1007/s00425-006-0444-4
- Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., and Zhu, J.-K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99, 11507-11512. https://doi.org/10.1073/pnas.172399299
- Gong, Z., Dong, C.-H., Lee, H., Zhu, J., Xiong, L., Gong, D., Stevenson, B., and Zhu, J.-K. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17, 256-267. https://doi.org/10.1105/tpc.104.027557
- Gong, X.D., Su, Q.Q., Lin, D.Z., Jiang, Q., Xu, J.L., Zhang, J.H., Teng, S., and Dong, Y.J. (2014). The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J. Integr. Plant Biol. 56, 400-410. https://doi.org/10.1111/jipb.12138
- Graumann, P.L., and Marahiel, M.A. (1998). A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23, 286-290. https://doi.org/10.1016/S0968-0004(98)01255-9
- Gu, L., Xu, T., Lee, K., Lee, K.H., and Kang, H. (2014). A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol. Biochem. 82, 309-318. https://doi.org/10.1016/j.plaphy.2014.07.006
- Gu, L., Jung, H.J., Kim, B.M., Xu, T., Lee, K., Kim, Y.O., and Kang, H. (2015). A chloroplast-localized S1 domain-containing protein SRRP1 plays a role in Arabidopsis seedling growth in the presence of ABA. J. Plant. Physiol. 189, 34-41. https://doi.org/10.1016/j.jplph.2015.10.003
- Guan, Q., Wu, J., Zhang, Y., Jiang, C., Liu, R., Chai, C., and Zhu, J. (2013). A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25, 342-356. https://doi.org/10.1105/tpc.112.108340
- Hammani, K., and Giege, P. (2014). RNA metabolism in plant mitochondria. Trends Plant Sci. 19, 380-389. https://doi.org/10.1016/j.tplants.2013.12.008
- Han, J.H., Lee, K., Lee, K.H., Jung, S., Jeon, Y., Pai, H.S., and Kang, H. (2015). A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 83, 277-289. https://doi.org/10.1111/tpj.12889
- Herschlag, D. (1995). RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871-20874. https://doi.org/10.1074/jbc.270.36.20871
- Huang, H.-R., Rowe, C.E., Mohr, S., Jiang, Y., Lambowitz, A.M., and Perlman, P.S. (2005). The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc. Natl. Acad. Sci. USA 102, 163-168. https://doi.org/10.1073/pnas.0407896101
- Huang, C.-K., Huang, L.-F., Huang, J.-J., Wu, S.-J., Yeh, C.-H., and Lu, C.-A. (2010). A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiol. 51, 694-706. https://doi.org/10.1093/pcp/pcq045
- Ivanyi-Nagy, R., Davidovic, L., Khandjian, E., and Darlix, J.-L. (2005). Disordered RNA chaperone proteins: from functions to disease. Cell. Mol. Life Sci. 62, 1409-1417. https://doi.org/10.1007/s00018-005-5100-9
- Jankowsky, E. (2011). RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19-29. https://doi.org/10.1016/j.tibs.2010.07.008
- Jeon, Y., Jung, H.J., Kang, H., Park, Y.I., Lee, S.H., and Pai, H.S. (2012). S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana. New Phytol. 193, 349-363. https://doi.org/10.1111/j.1469-8137.2011.03941.x
- Jiang, S.-C., Mei, C., Liang, S., Yu, Y.-T., Lu, K., Wu, Z., Wang, X.- F., and Zhang, D.-P. (2015). Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369-385. https://doi.org/10.1007/s11103-015-0327-9
- Jung, H.J., and Kang, H. (2014). The Arabidopsis U11/U12-65K is an indispensable component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development. Plant J. 78, 799-810. https://doi.org/10.1111/tpj.12498
- Jung, H.J., Park, S.J., and Kang, H.S., (2013). Regulation of RNA metabolism in plant development and stress responses. J. Plant Biol. 56, 123-129. https://doi.org/10.1007/s12374-013-0906-8
- Kanai, M., Hayashi, M., Kondo, M., and Nishimura, M. (2013). The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant Cell Physiol. 54, 1431-1440. https://doi.org/10.1093/pcp/pct091
- Kang, H., Park, S.J., and Kwak, K.J. (2013). Plant RNA chaperones in stress response. Trends Plant Sci. 18, 100-106. https://doi.org/10.1016/j.tplants.2012.08.004
- Kant, P., Kant, S., Gordon, M., Shaked, R., and Barak, S. (2007). STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 145, 814-830. https://doi.org/10.1104/pp.107.099895
- Karlson, D., and Imai, R. (2003). Conservation of the cold shock domain protein family in plants. Plant Physiol. 131, 12-15. https://doi.org/10.1104/pp.014472
- Karlson, D., Nakaminami, K., Toyomasu, T., and Imai, R. (2002). A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J. Biol. Chem. 277, 35248-35256. https://doi.org/10.1074/jbc.M205774200
- Keren, I., Klipcan, L., Bezawork-Geleta, A., Kolton, M., Shaya, F., and Ostersetzer-Biran, O. (2008). Characterization of the molecular basis of group II intron RNA recognition by CRS1- CRM domains. J. Biol. Chem. 283, 23333-23342. https://doi.org/10.1074/jbc.M710488200
- Kim, Y.O., and Kang, H. (2006). The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol. 47, 793-798. https://doi.org/10.1093/pcp/pcj047
- Kim, Y.O., Kim, J.S., and Kang, H. (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42, 890-900. https://doi.org/10.1111/j.1365-313X.2005.02420.x
- Kim, J.S., Park, S.J., Kwak, K.J., Kim, Y.O., Kim, J.Y., Song, J., Jang, B., Jung, C.H., and Kang, H. (2007a). Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res. 35, 506-516.
- Kim, J.Y., Park, S.J., Jang, B., Jung, C.H., Ahn, S.J., Goh, C.H., Cho, K., Han, O., and Kang, H. (2007b). Functional characterization of a glycine‐rich RNA‐binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J. 50, 439-451. https://doi.org/10.1111/j.1365-313X.2007.03057.x
- Kim, J.S., Jung, H.J., Lee, H.J., Kim, K., Goh, C.H., Woo, Y., Oh, S.H., Han, Y.S., and Kang, H. (2008a). Glycine‐rich RNA‐binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55, 455-466. https://doi.org/10.1111/j.1365-313X.2008.03518.x
- Kim, J.S., Kim, K.A., Oh, T.R., Park, C.M., and Kang, H. (2008b). Functional Characterization of DEAD-Box RNA Helicases in Arabidopsis thaliana under Abiotic Stress Conditions. Plant Cell Physiol. 49, 1563-1571. https://doi.org/10.1093/pcp/pcn125
- Kim, M.-H., Sasaki, K. and Imai, R. (2009). Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J. Biol. Chem. 284, 23454-23460. https://doi.org/10.1074/jbc.M109.025791
- Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H. (2010a). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61, 2317-2325. https://doi.org/10.1093/jxb/erq058
- Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H. (2010b). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ. 33, 759-768.
- Kim, W.Y., Jung, H.J., Kwak, K.J., Kim, M.K., Oh, S.H., Han, Y.S., and Kang, H. (2010c). The Arabidopsis U12-type spliceosomal protein U11/U12-31K is involved in U12 intron splicing via RNA chaperone activity and affects plant development. Plant Cell 22, 3951-3962. https://doi.org/10.1105/tpc.110.079103
- Kohler, D., Schmidt-Gattung, S., and Binder, S. (2010). The DEADbox protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant. Mol. Biol. 72, 459-467. https://doi.org/10.1007/s11103-009-9584-9
- Koprivova, A., des Francs-Small, C.C., Calder, G., Mugford, S.T., Tanz, S., Lee, B.R., Zechmann, B., Small, I., and Kopriva, S. (2010). Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts. J. Biol. Chem. 285, 32192-32199. https://doi.org/10.1074/jbc.M110.147603
- Kroeger, T.S., Watkins, K.P., Friso, G., van Wijk, K.J., and Barkan, A. (2009). A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc. Natl. Acad. Sci. USA 106, 4537-4542. https://doi.org/10.1073/pnas.0812503106
- Kwak, K.J., Kim, Y.O., and Kang, H. (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56, 3007-3016. https://doi.org/10.1093/jxb/eri298
- Kwak, K.J., Jung, H.J., Lee, K.H., Kim, Y.S., Kim, W.Y., Ahn, S.J., and Kang, H. (2012). The minor spliceosomal protein U11/U12- 31K is an RNA chaperone crucial for U12 intron splicing and the development of dicot and monocot plants. PLoS One 7, e43707. https://doi.org/10.1371/journal.pone.0043707
- Laluk, K., AbuQamar, S., and Mengiste, T. (2011). The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 156, 2053-2068. https://doi.org/10.1104/pp.111.177501
- Lee, K., Lee, H.J., Kim, D.H., Jeon, Y., Pai, H.S., and Kang, H. (2014). A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biol. 14, 98. https://doi.org/10.1186/1471-2229-14-98
- Lightowlers, R., and Chrzanowska-Lightowlers, Z. (2008). PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression. Biochem. J. 416, e5-e6. https://doi.org/10.1042/BJ20081942
- Lim, M.-H., Kim, J., Kim, Y.-S., Chung, K.-S., Seo, Y.-H., Lee, I., Kim, J., Hong, C.B., Kim, H.-J., and Park, C.-M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731-740. https://doi.org/10.1105/tpc.019331
- Liu, M., Shi, D.Q., Yuan, L., Liu, J., and Yang, W.C. (2010a). SLOW WALKER3, encoding a putative DEAD‐box RNA helicase, is essential for female gametogenesis in Arabidopsis. J. Int. Plant Biol. 52, 817-828. https://doi.org/10.1111/j.1744-7909.2010.00972.x
- Liu, Y., He, J., Chen, Z., Ren, X., Hong, X., and Gong, Z. (2010b). ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. Plant J. 63, 749-765. https://doi.org/10.1111/j.1365-313X.2010.04280.x
- de Longevialle, A.F., Meyer, E.H., Andres, C., Taylor, N.L., Lurin, C., Millar, A.H., and Small, I.D. (2007). The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19, 3256-3265. https://doi.org/10.1105/tpc.107.054841
- de Longevialle, A.F., Hendrickson, L., Taylor, N.L., Delannoy, E., Lurin, C., Badger, M., Millar, A.H., and Small, I. (2008). The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J. 56, 157-168. https://doi.org/10.1111/j.1365-313X.2008.03581.x
- de Longevialle, A.F., Small, I.D., and Lurin, C. (2010). Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles. Mol. Plant 3, 691-705. https://doi.org/10.1093/mp/ssq025
- Lorkovic, Z.J. (2009). Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci.14, 229-236. https://doi.org/10.1016/j.tplants.2009.01.007
- Lorkovic, Z.J., and Barta, A. (2002). Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNAbinding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30, 623-635. https://doi.org/10.1093/nar/30.3.623
- Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., and Cobbett, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745. https://doi.org/10.1016/S0092-8674(00)80256-1
- Mangeon, A., Junqueira, R.M., and Sachetto-Martins, G. (2010). Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal. Behav. 5, 99-104. https://doi.org/10.4161/psb.5.2.10336
- Manival, X., Ghisolfi-Nieto, L., Joseph, G., Bouvet, P., and Erard, M. (2001). RNA-binding strategies common to cold-shock domainand RNA recognition motif-containing proteins. Nucleic Acids Res. 29, 2223-2233. https://doi.org/10.1093/nar/29.11.2223
- Martin, S.L. (2010). Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol. 7, 706-711. https://doi.org/10.4161/rna.7.6.13766
- Mei, C., Jiang, S.-C., Lu, Y.-F., Wu, F.-Q., Yu, Y.-T., Liang, S., Feng, X.-J., Comeras, S.P., Lu, K., and Wu, Z. (2014). Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. J. Exp. Bot. 65, 5317-5330. https://doi.org/10.1093/jxb/eru293
- Mihailovich, M., Militti, C., Gabaldon, T., and Gebauer, F. (2010). Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. BioEssays 32, 109-118. https://doi.org/10.1002/bies.200900122
- Mingam, A., Toffano-Nioche, C., Brunaud, V., Boudet, N., Kreis, M., and Lecharny, A. (2004). DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. J. Plant Biotechnol. 2, 401-415. https://doi.org/10.1111/j.1467-7652.2004.00084.x
- Mockler, T.C., Yu, X., Shalitin, D., Parikh, D., Michael, T.P., Liou, J., Huang, J., Smith, Z., Alonso, J.M., and Ecker, J.R. (2004). Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc. Natl. Acad. Sci. USA 101, 12759-12764. https://doi.org/10.1073/pnas.0404552101
- Mohr, S., Stryker, J.M., and Lambowitz, A.M. (2002). A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769-779. https://doi.org/10.1016/S0092-8674(02)00771-7
- Mohr, S., Matsuura, M., Perlman, P.S., and Lambowitz, A.M. (2006). A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc. Natl. Acad. Sci. U.S.A. 103, 3569-3574. https://doi.org/10.1073/pnas.0600332103
- Nagai, K., Oubridge, C., Ito, N., Avis, J., and Evans, P. (1995). The RNP domain : a sequence- specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem. Sci. 20, 235-240. https://doi.org/10.1016/S0968-0004(00)89024-6
- Nakaminami, K., Karlson, D.T., and Imai, R. (2006). Functional conservation of cold shock domains in bacteria and higher plants. Proc. Natl. Acad. Sci. U.S.A. 103, 10122-10127. https://doi.org/10.1073/pnas.0603168103
- O'Toole, N., Hattori, M., Andres, C., Iida, K., Lurin, C., Schmitz- Linneweber, C., Sugita, M., and Small, I. (2008). On the expansion of the pentatricopeptide repeat gene family in plants. Mol. Biol. Evol. 25, 1120-1128. https://doi.org/10.1093/molbev/msn057
- Ostersetzer, O., Cooke, A.M., Watkins, K.P., and Barkan, A. (2005). CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17, 241-255. https://doi.org/10.1105/tpc.104.027516
- Ostheimer, G.J., Barkan, A., and Matthews, B.W. (2002). Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure 10, 1593-1601. https://doi.org/10.1016/S0969-2126(02)00886-9
- Rackham, O., and Filipovska, A. (2012). The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim. Biophys. Acta 1819, 1008-1016. https://doi.org/10.1016/j.bbagrm.2011.10.007
- Rajkowitsch, L., Chen, D., Stampfl, S., Semrad, K., Waldsich, C., Mayer, O., Jantsch, M.F., Konrat, R., Blasi, U., and Schroeder, R. (2007). RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118-130. https://doi.org/10.4161/rna.4.3.5445
- Ripoll, J.J., Ferrándiz, C., Martínez-Laborda, A., and Vera, A. (2006). PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev. Biol. 289, 346-359. https://doi.org/10.1016/j.ydbio.2005.10.037
- Sachetto-Martins, G., Franco, L.O., and de Oliveira, D.E. (2000). Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophys. Acta. 1492, 1-14 https://doi.org/10.1016/S0167-4781(00)00064-6
- Saha, D., Prasad, A.M., and Srinivasan, R. (2007). Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol. Biochem. 45, 521-534. https://doi.org/10.1016/j.plaphy.2007.03.026
- Sasaki, K., Kim, M.-H., and Imai, R. (2007). Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem. Biophys. Res. Commun. 364, 633-638. https://doi.org/10.1016/j.bbrc.2007.10.059
- Schein, A., Sheffy-Levin, S., Glaser, F., and Schuster, G. (2008). The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA 14, 1057-1068. https://doi.org/10.1261/rna.907608
- Schmitz-Linneweber, C., and Small, I. (2008). Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 13, 663-670. https://doi.org/10.1016/j.tplants.2008.10.001
- Schmitz-Linneweber, C., Williams-Carrier, R.E., Williams-Voelker, P.M., Kroeger, T.S., Vichas, A., and Barkan, A. (2006). A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18, 2650-2663. https://doi.org/10.1105/tpc.106.046110
- Simpson, G.G., and Filipowicz, W. (1996). Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol. Biol. 32, 1-41 https://doi.org/10.1007/BF00039375
- Small, I.D., and Peeters, N. (2000). The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 45-47. https://doi.org/10.1016/S0968-0004(99)01520-0
- Stern, D.B., Goldschmidt-Clermont, M. and Hanson, M.R. (2010). Chloroplast RNA metabolism. Annu. Rev. Plant Biol. 61, 125-155. https://doi.org/10.1146/annurev-arplant-042809-112242
- Tan, J., Tan, Z., Wu, F., Sheng, P., Heng, Y., Wang, X., Ren, Y., Wang, J., Guo, X., and Zhang, X. (2014). A novel chloroplastlocalized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol. Plant 7, 1329-1349. https://doi.org/10.1093/mp/ssu054
- Tripurani, S.K., Nakaminami, K., Thompson, K.B., Crowell, S.V., Guy, C.L., and Karlson, D.T. (2011). Spatial and temporal expression of cold-responsive DEAD-box RNA helicases reveals their functional roles during embryogenesis in Arabidopsis thaliana. Plant Mol. Biol. Rep. 29, 761-768. https://doi.org/10.1007/s11105-010-0282-1
- Woodson, S.A. (2010). Taming free energy landscapes with RNA chaperones. RNA Biol. 7, 677-686. https://doi.org/10.4161/rna.7.6.13615
- Xu, T., Gu, L., Choi, M.J., Kim, R.J., Suh, M.C., and Kang, H. (2014). Comparative functional analysis of wheat (Triticum aestivum). zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses. PLoS One 9, e96877. https://doi.org/10.1371/journal.pone.0096877
- Yin, P., Li, Q., Yan, C., Liu, Y., Liu, J., Yu, F., Wang, Z., Long, J., He, J., and Wang, H.-W. (2013). Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504, 168-171. https://doi.org/10.1038/nature12651
- Zmudjak, M., Colas des Francs-Small, C., Keren, I., Shaya, F., Belausov, E., Small, I., and Ostersetzer-Biran, O. (2013). mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis. New Phytol. 199, 379-394. https://doi.org/10.1111/nph.12282
- Zsigmond, L., Rigo, G., Szarka, A., Szekely, G., Otvos, K., Darula, Z., Medzihradszky, K.F., Koncz, C., Koncz, Z., and Szabados, L. (2008). Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol. 146, 1721-1737. https://doi.org/10.1104/pp.107.111260
- Zsigmond, L., Szepesi, A., Tari, I., Rigo, G., Kiraly, A., and Szabados, L. (2012). Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci. 182, 87-93. https://doi.org/10.1016/j.plantsci.2011.07.008
Cited by
- Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants ( Coffea arabica ) and rice ( Oryza sativa ) vol.201, 2016, https://doi.org/10.1016/j.jplph.2016.07.004
- Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions vol.159, pp.1, 2017, https://doi.org/10.1111/ppl.12488
- RNA structure, binding, and coordination in Arabidopsis vol.8, pp.5, 2017, https://doi.org/10.1002/wrna.1426
- Plant RNA Interactome Capture: Revealing the Plant RBPome vol.22, pp.6, 2017, https://doi.org/10.1016/j.tplants.2017.04.006
- Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses vol.8, 2017, https://doi.org/10.3389/fpls.2017.00871
- Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China vol.22, pp.7, 2017, https://doi.org/10.3390/molecules22071158
- Rice DEAD-box RNA helicase OsRH53 has negative impact on Arabidopsis response to abiotic stresses vol.85, pp.1, 2018, https://doi.org/10.1007/s10725-018-0381-9
- Development of an in vitro pre-mRNA splicing assay using plant nuclear extract vol.14, pp.1, 2018, https://doi.org/10.1186/s13007-017-0271-6
- Overexpression of the DEAD-Box RNA Helicase Gene AtRH17 Confers Tolerance to Salt Stress in Arabidopsis vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123777
- Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01209
- A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-27814-2
- Rice OsRH58, a chloroplast DEAD-box RNA helicase, improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation vol.19, pp.1, 2019, https://doi.org/10.1186/s12870-018-1623-8
- A Chloroplast-targeted S1 RNA-binding Domain Protein Plays a Role in Arabidopsis Response to Diverse Abiotic Stresses vol.62, pp.1, 2019, https://doi.org/10.1007/s12374-018-0325-y
- Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0209982
- Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L. vol.8, pp.None, 2016, https://doi.org/10.3389/fpls.2017.02037
- Identification and characterization of glycoproteins during oil palm somatic embryogenesis vol.52, pp.5, 2018, https://doi.org/10.1016/j.anres.2018.11.011
- Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance vol.46, pp.5, 2016, https://doi.org/10.1071/fp18241
- Label‐Free Quantitative Proteomics of Enriched Nuclei from Sugarcane (Saccharum ssp) Stems in Response to Drought Stress vol.19, pp.14, 2016, https://doi.org/10.1002/pmic.201900004
- Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants vol.60, pp.9, 2016, https://doi.org/10.1093/pcp/pcz067
- Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins vol.60, pp.9, 2019, https://doi.org/10.1093/pcp/pcz072
- PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana vol.100, pp.2, 2016, https://doi.org/10.1111/tpj.14441
- Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? vol.11, pp.None, 2016, https://doi.org/10.3389/fpls.2020.578096
- Insights Into Potato Spindle Tuber Viroid Quasi-Species From Infection to Disease vol.11, pp.None, 2016, https://doi.org/10.3389/fmicb.2020.01235
- Investigation of a Novel Salt Stress-Responsive Pathway Mediated by Arabidopsis DEAD-Box RNA Helicase Gene AtRH17 Using RNA-Seq Analysis vol.21, pp.5, 2020, https://doi.org/10.3390/ijms21051595
- Genetic and signalling pathways of dry fruit size: targets for genome editing‐based crop improvement vol.18, pp.5, 2016, https://doi.org/10.1111/pbi.13318
- Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124548
- Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO2 under high ambient ozone vol.26, pp.7, 2016, https://doi.org/10.1007/s12298-020-00828-9
- Insights into the N6-methyladenosine mechanism and its functionality: progress and questions vol.40, pp.5, 2020, https://doi.org/10.1080/07388551.2020.1751059
- Emerging Roles of RNA-Binding Proteins in Seed Development and Performance vol.21, pp.18, 2016, https://doi.org/10.3390/ijms21186822
- A La-Related Protein LaRP6a Delays Flowering of Arabidopsis thaliana by Upregulating FLC Transcript Levels vol.63, pp.5, 2020, https://doi.org/10.1007/s12374-020-09261-7
- Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-58495-5
- Evaluation of the role of Medicago truncatula Zn finger CCHC type protein after heterologous expression in Arabidopsis thaliana vol.35, pp.1, 2016, https://doi.org/10.1080/13102818.2021.2006786
- Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions vol.11, pp.1, 2016, https://doi.org/10.3390/life11010049
- The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status vol.22, pp.6, 2021, https://doi.org/10.3390/ijms22062845
- Molecular regulatory mechanisms underlying the adaptability of polyploid plants vol.96, pp.2, 2016, https://doi.org/10.1111/brv.12661
- N6‐Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis vol.106, pp.6, 2021, https://doi.org/10.1111/tpj.15270
- Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview vol.22, pp.13, 2016, https://doi.org/10.3390/ijms22136731
- Alpha‐ketoglutarate‐dependent dioxygenase homolog 10B, an N6‐methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in Arabidopsis thali vol.173, pp.3, 2016, https://doi.org/10.1111/ppl.13505
- Comparative Genomics, Evolution, and Drought-Induced Expression of Dehydrin Genes in Model Brachypodium Grasses vol.10, pp.12, 2016, https://doi.org/10.3390/plants10122664