DOI QR코드

DOI QR Code

Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses

  • Lee, Kwanuk (Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kang, Hunseung (Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2015.12.23
  • 심사 : 2016.01.04
  • 발행 : 2016.03.31

초록

Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses.

키워드

참고문헌

  1. Alba, M.M., and Pages, M. (1998). Plant proteins containing the RNA-recognition motif. Trends Plant Sci. 3, 15-21.
  2. Aliprandi, P., Sizun, C., Perez, J., Mareuil, F., Caputo, S., Leroy, J.- L., Odaert, B., Laalami, S., Uzan, M., and Bontems, F. (2008). S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNAprotein interactions: an NMR and SAXS analysis. J. Biol. Chem. 283, 13289-13301. https://doi.org/10.1074/jbc.M707111200
  3. Arthur, D.C., Ghetu, A.F., Gubbins, M.J., Edwards, R.A., Frost, L.S., and Glover, J.M. (2003). FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J. 22, 6346-6355. https://doi.org/10.1093/emboj/cdg607
  4. Asakura, Y., and Barkan, A. (2006). Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol. 142, 1656-1663. https://doi.org/10.1104/pp.106.088096
  5. Asakura, Y., and Barkan, A. (2007). A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19, 3864-3875. https://doi.org/10.1105/tpc.107.055160
  6. Asakura, Y., Bayraktar, O.A., and Barkan, A. (2008). Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts. RNA 14, 2319-2332. https://doi.org/10.1261/rna.1223708
  7. Asakura, Y., Galarneau, E., Watkins, K.P., Barkan, A., and van Wijk, K.J. (2012). Chloroplast RH3 DEAD Box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome riogenesis. Plant Physiol. 159, 961-974. https://doi.org/10.1104/pp.112.197525
  8. Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415-442. https://doi.org/10.1146/annurev-arplant-050213-040159
  9. Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y., and Watkins, K.P. (2007). The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA 13, 55-64.
  10. Brown, G.G., Colas des Francs-Small, C., and Ostersetzer-Biran, O. (2014). Group II intron splicing factors in plant mitochondria. Front. Plant Sci. 5, 35.
  11. Bycroft, M., Hubbard, T.J., Proctor, M., Freund, S.M., and Murzin, A.G. (1997). The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid–binding fold. Cell 88, 235-242. https://doi.org/10.1016/S0092-8674(00)81844-9
  12. del Campo, E.M. (2009). Post-transcriptional control of chloroplast gene expression. Gene Regul. Syst. Biol. 3, 31.
  13. Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D'Ordine, R., et al. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 147, 446-455. https://doi.org/10.1104/pp.108.118828
  14. Chaikam, V., and Karlson, D. (2008). Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ. 31, 995-1006. https://doi.org/10.1111/j.1365-3040.2008.01811.x
  15. Chaulk, S., Smith Frieday, M.N., Arthur, D.C., Culham, D.E., Edwards, R.A., Soo, P., Frost, L.S., Keates, R.A., Glover, J.M., and Wood, J.M. (2011). ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry 50, 3095-3106. https://doi.org/10.1021/bi101683a
  16. Chambers, J.R., and Bender, K.S. (2011). The RNA chaperone Hfq is important for growth and stress tolerance in Francisella novicida. PLoS One 6, e19797. https://doi.org/10.1371/journal.pone.0019797
  17. Chateigner-Boutin, A.L., des Francs-Small, C.C., Delannoy, E., Kahlau, S., Tanz, S.K., de Longevialle, A.F., Fujii, S., and Small, I. (2011). OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript rpoC1. Plant J. 65, 532-542. https://doi.org/10.1111/j.1365-313X.2010.04441.x
  18. Chekanova, J.A., Dutko, J.A., Mian, I.S., and Belostotsky, D.A. (2002). Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′$\rightarrow$ 5′ exonuclease containing S1 and KH RNAbinding domains. Nucleic Acids Res. 30, 695-700. https://doi.org/10.1093/nar/30.3.695
  19. Chi, W., He, B., Mao, J., Li, Q., Ma, J., Ji, D., Zou, M., and Zhang, L. (2012). The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol. 158, 693-707. https://doi.org/10.1104/pp.111.186775
  20. Choi, M.J., Park, Y.R., Park, S.J., and Kang, H. (2015). Stressresponsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. Plant Physiol. Biochem. 96, 132-140. https://doi.org/10.1016/j.plaphy.2015.07.027
  21. Cottage, A., Mott, E.K., Kempster, J.A., and Gray, J.C. (2010). The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J. Exp. Bot. 61, 3773-3786. https://doi.org/10.1093/jxb/erq186
  22. Delvillani, F., Papiani, G., Deho, G., and Briani, F. (2011). S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Res. 39, 7702-7715. https://doi.org/10.1093/nar/gkr417
  23. des Francs-Small, C.C., de Longevialle, A.F., Li, Y., Lowe, E., Tanz, S.K., Smith, C., Bevan, M.W., and Small, I. (2014). The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial Complex I. Plant Physiol. 165, 1409-1416. https://doi.org/10.1104/pp.114.244616
  24. Filipovska, A., and Rackham, O. (2012). Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol. Biosyst. 8, 699-708. https://doi.org/10.1039/c2mb05392f
  25. Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., and Menand, B. (2009). Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress. Int. J. Mol. Sci. 10, 3168-3185. https://doi.org/10.3390/ijms10073168
  26. Fusaro, A.F., Bocca, S.N., Ramos, R.L.B., Barroco, R.M., Magioli, C., Jorge, V.C., Coutinho, T.C., Rangel-Lima, C.M., De Rycke, R., and Inze, D. (2007). AtGRP2, a cold-induced nucleocytoplasmic RNA-binding protein, has a role in flower and seed development. Planta 225, 1339-1351. https://doi.org/10.1007/s00425-006-0444-4
  27. Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., and Zhu, J.-K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99, 11507-11512. https://doi.org/10.1073/pnas.172399299
  28. Gong, Z., Dong, C.-H., Lee, H., Zhu, J., Xiong, L., Gong, D., Stevenson, B., and Zhu, J.-K. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17, 256-267. https://doi.org/10.1105/tpc.104.027557
  29. Gong, X.D., Su, Q.Q., Lin, D.Z., Jiang, Q., Xu, J.L., Zhang, J.H., Teng, S., and Dong, Y.J. (2014). The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J. Integr. Plant Biol. 56, 400-410. https://doi.org/10.1111/jipb.12138
  30. Graumann, P.L., and Marahiel, M.A. (1998). A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23, 286-290. https://doi.org/10.1016/S0968-0004(98)01255-9
  31. Gu, L., Xu, T., Lee, K., Lee, K.H., and Kang, H. (2014). A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol. Biochem. 82, 309-318. https://doi.org/10.1016/j.plaphy.2014.07.006
  32. Gu, L., Jung, H.J., Kim, B.M., Xu, T., Lee, K., Kim, Y.O., and Kang, H. (2015). A chloroplast-localized S1 domain-containing protein SRRP1 plays a role in Arabidopsis seedling growth in the presence of ABA. J. Plant. Physiol. 189, 34-41. https://doi.org/10.1016/j.jplph.2015.10.003
  33. Guan, Q., Wu, J., Zhang, Y., Jiang, C., Liu, R., Chai, C., and Zhu, J. (2013). A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25, 342-356. https://doi.org/10.1105/tpc.112.108340
  34. Hammani, K., and Giege, P. (2014). RNA metabolism in plant mitochondria. Trends Plant Sci. 19, 380-389. https://doi.org/10.1016/j.tplants.2013.12.008
  35. Han, J.H., Lee, K., Lee, K.H., Jung, S., Jeon, Y., Pai, H.S., and Kang, H. (2015). A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 83, 277-289. https://doi.org/10.1111/tpj.12889
  36. Herschlag, D. (1995). RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871-20874. https://doi.org/10.1074/jbc.270.36.20871
  37. Huang, H.-R., Rowe, C.E., Mohr, S., Jiang, Y., Lambowitz, A.M., and Perlman, P.S. (2005). The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc. Natl. Acad. Sci. USA 102, 163-168. https://doi.org/10.1073/pnas.0407896101
  38. Huang, C.-K., Huang, L.-F., Huang, J.-J., Wu, S.-J., Yeh, C.-H., and Lu, C.-A. (2010). A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiol. 51, 694-706. https://doi.org/10.1093/pcp/pcq045
  39. Ivanyi-Nagy, R., Davidovic, L., Khandjian, E., and Darlix, J.-L. (2005). Disordered RNA chaperone proteins: from functions to disease. Cell. Mol. Life Sci. 62, 1409-1417. https://doi.org/10.1007/s00018-005-5100-9
  40. Jankowsky, E. (2011). RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19-29. https://doi.org/10.1016/j.tibs.2010.07.008
  41. Jeon, Y., Jung, H.J., Kang, H., Park, Y.I., Lee, S.H., and Pai, H.S. (2012). S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana. New Phytol. 193, 349-363. https://doi.org/10.1111/j.1469-8137.2011.03941.x
  42. Jiang, S.-C., Mei, C., Liang, S., Yu, Y.-T., Lu, K., Wu, Z., Wang, X.- F., and Zhang, D.-P. (2015). Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369-385. https://doi.org/10.1007/s11103-015-0327-9
  43. Jung, H.J., and Kang, H. (2014). The Arabidopsis U11/U12-65K is an indispensable component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development. Plant J. 78, 799-810. https://doi.org/10.1111/tpj.12498
  44. Jung, H.J., Park, S.J., and Kang, H.S., (2013). Regulation of RNA metabolism in plant development and stress responses. J. Plant Biol. 56, 123-129. https://doi.org/10.1007/s12374-013-0906-8
  45. Kanai, M., Hayashi, M., Kondo, M., and Nishimura, M. (2013). The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant Cell Physiol. 54, 1431-1440. https://doi.org/10.1093/pcp/pct091
  46. Kang, H., Park, S.J., and Kwak, K.J. (2013). Plant RNA chaperones in stress response. Trends Plant Sci. 18, 100-106. https://doi.org/10.1016/j.tplants.2012.08.004
  47. Kant, P., Kant, S., Gordon, M., Shaked, R., and Barak, S. (2007). STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 145, 814-830. https://doi.org/10.1104/pp.107.099895
  48. Karlson, D., and Imai, R. (2003). Conservation of the cold shock domain protein family in plants. Plant Physiol. 131, 12-15. https://doi.org/10.1104/pp.014472
  49. Karlson, D., Nakaminami, K., Toyomasu, T., and Imai, R. (2002). A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J. Biol. Chem. 277, 35248-35256. https://doi.org/10.1074/jbc.M205774200
  50. Keren, I., Klipcan, L., Bezawork-Geleta, A., Kolton, M., Shaya, F., and Ostersetzer-Biran, O. (2008). Characterization of the molecular basis of group II intron RNA recognition by CRS1- CRM domains. J. Biol. Chem. 283, 23333-23342. https://doi.org/10.1074/jbc.M710488200
  51. Kim, Y.O., and Kang, H. (2006). The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol. 47, 793-798. https://doi.org/10.1093/pcp/pcj047
  52. Kim, Y.O., Kim, J.S., and Kang, H. (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42, 890-900. https://doi.org/10.1111/j.1365-313X.2005.02420.x
  53. Kim, J.S., Park, S.J., Kwak, K.J., Kim, Y.O., Kim, J.Y., Song, J., Jang, B., Jung, C.H., and Kang, H. (2007a). Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res. 35, 506-516.
  54. Kim, J.Y., Park, S.J., Jang, B., Jung, C.H., Ahn, S.J., Goh, C.H., Cho, K., Han, O., and Kang, H. (2007b). Functional characterization of a glycine‐rich RNA‐binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J. 50, 439-451. https://doi.org/10.1111/j.1365-313X.2007.03057.x
  55. Kim, J.S., Jung, H.J., Lee, H.J., Kim, K., Goh, C.H., Woo, Y., Oh, S.H., Han, Y.S., and Kang, H. (2008a). Glycine‐rich RNA‐binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55, 455-466. https://doi.org/10.1111/j.1365-313X.2008.03518.x
  56. Kim, J.S., Kim, K.A., Oh, T.R., Park, C.M., and Kang, H. (2008b). Functional Characterization of DEAD-Box RNA Helicases in Arabidopsis thaliana under Abiotic Stress Conditions. Plant Cell Physiol. 49, 1563-1571. https://doi.org/10.1093/pcp/pcn125
  57. Kim, M.-H., Sasaki, K. and Imai, R. (2009). Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J. Biol. Chem. 284, 23454-23460. https://doi.org/10.1074/jbc.M109.025791
  58. Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H. (2010a). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61, 2317-2325. https://doi.org/10.1093/jxb/erq058
  59. Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H. (2010b). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ. 33, 759-768.
  60. Kim, W.Y., Jung, H.J., Kwak, K.J., Kim, M.K., Oh, S.H., Han, Y.S., and Kang, H. (2010c). The Arabidopsis U12-type spliceosomal protein U11/U12-31K is involved in U12 intron splicing via RNA chaperone activity and affects plant development. Plant Cell 22, 3951-3962. https://doi.org/10.1105/tpc.110.079103
  61. Kohler, D., Schmidt-Gattung, S., and Binder, S. (2010). The DEADbox protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant. Mol. Biol. 72, 459-467. https://doi.org/10.1007/s11103-009-9584-9
  62. Koprivova, A., des Francs-Small, C.C., Calder, G., Mugford, S.T., Tanz, S., Lee, B.R., Zechmann, B., Small, I., and Kopriva, S. (2010). Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts. J. Biol. Chem. 285, 32192-32199. https://doi.org/10.1074/jbc.M110.147603
  63. Kroeger, T.S., Watkins, K.P., Friso, G., van Wijk, K.J., and Barkan, A. (2009). A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc. Natl. Acad. Sci. USA 106, 4537-4542. https://doi.org/10.1073/pnas.0812503106
  64. Kwak, K.J., Kim, Y.O., and Kang, H. (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56, 3007-3016. https://doi.org/10.1093/jxb/eri298
  65. Kwak, K.J., Jung, H.J., Lee, K.H., Kim, Y.S., Kim, W.Y., Ahn, S.J., and Kang, H. (2012). The minor spliceosomal protein U11/U12- 31K is an RNA chaperone crucial for U12 intron splicing and the development of dicot and monocot plants. PLoS One 7, e43707. https://doi.org/10.1371/journal.pone.0043707
  66. Laluk, K., AbuQamar, S., and Mengiste, T. (2011). The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 156, 2053-2068. https://doi.org/10.1104/pp.111.177501
  67. Lee, K., Lee, H.J., Kim, D.H., Jeon, Y., Pai, H.S., and Kang, H. (2014). A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biol. 14, 98. https://doi.org/10.1186/1471-2229-14-98
  68. Lightowlers, R., and Chrzanowska-Lightowlers, Z. (2008). PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression. Biochem. J. 416, e5-e6. https://doi.org/10.1042/BJ20081942
  69. Lim, M.-H., Kim, J., Kim, Y.-S., Chung, K.-S., Seo, Y.-H., Lee, I., Kim, J., Hong, C.B., Kim, H.-J., and Park, C.-M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731-740. https://doi.org/10.1105/tpc.019331
  70. Liu, M., Shi, D.Q., Yuan, L., Liu, J., and Yang, W.C. (2010a). SLOW WALKER3, encoding a putative DEAD‐box RNA helicase, is essential for female gametogenesis in Arabidopsis. J. Int. Plant Biol. 52, 817-828. https://doi.org/10.1111/j.1744-7909.2010.00972.x
  71. Liu, Y., He, J., Chen, Z., Ren, X., Hong, X., and Gong, Z. (2010b). ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. Plant J. 63, 749-765. https://doi.org/10.1111/j.1365-313X.2010.04280.x
  72. de Longevialle, A.F., Meyer, E.H., Andres, C., Taylor, N.L., Lurin, C., Millar, A.H., and Small, I.D. (2007). The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19, 3256-3265. https://doi.org/10.1105/tpc.107.054841
  73. de Longevialle, A.F., Hendrickson, L., Taylor, N.L., Delannoy, E., Lurin, C., Badger, M., Millar, A.H., and Small, I. (2008). The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J. 56, 157-168. https://doi.org/10.1111/j.1365-313X.2008.03581.x
  74. de Longevialle, A.F., Small, I.D., and Lurin, C. (2010). Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles. Mol. Plant 3, 691-705. https://doi.org/10.1093/mp/ssq025
  75. Lorkovic, Z.J. (2009). Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci.14, 229-236. https://doi.org/10.1016/j.tplants.2009.01.007
  76. Lorkovic, Z.J., and Barta, A. (2002). Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNAbinding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30, 623-635. https://doi.org/10.1093/nar/30.3.623
  77. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., and Cobbett, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745. https://doi.org/10.1016/S0092-8674(00)80256-1
  78. Mangeon, A., Junqueira, R.M., and Sachetto-Martins, G. (2010). Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal. Behav. 5, 99-104. https://doi.org/10.4161/psb.5.2.10336
  79. Manival, X., Ghisolfi-Nieto, L., Joseph, G., Bouvet, P., and Erard, M. (2001). RNA-binding strategies common to cold-shock domainand RNA recognition motif-containing proteins. Nucleic Acids Res. 29, 2223-2233. https://doi.org/10.1093/nar/29.11.2223
  80. Martin, S.L. (2010). Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol. 7, 706-711. https://doi.org/10.4161/rna.7.6.13766
  81. Mei, C., Jiang, S.-C., Lu, Y.-F., Wu, F.-Q., Yu, Y.-T., Liang, S., Feng, X.-J., Comeras, S.P., Lu, K., and Wu, Z. (2014). Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. J. Exp. Bot. 65, 5317-5330. https://doi.org/10.1093/jxb/eru293
  82. Mihailovich, M., Militti, C., Gabaldon, T., and Gebauer, F. (2010). Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. BioEssays 32, 109-118. https://doi.org/10.1002/bies.200900122
  83. Mingam, A., Toffano-Nioche, C., Brunaud, V., Boudet, N., Kreis, M., and Lecharny, A. (2004). DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. J. Plant Biotechnol. 2, 401-415. https://doi.org/10.1111/j.1467-7652.2004.00084.x
  84. Mockler, T.C., Yu, X., Shalitin, D., Parikh, D., Michael, T.P., Liou, J., Huang, J., Smith, Z., Alonso, J.M., and Ecker, J.R. (2004). Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc. Natl. Acad. Sci. USA 101, 12759-12764. https://doi.org/10.1073/pnas.0404552101
  85. Mohr, S., Stryker, J.M., and Lambowitz, A.M. (2002). A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769-779. https://doi.org/10.1016/S0092-8674(02)00771-7
  86. Mohr, S., Matsuura, M., Perlman, P.S., and Lambowitz, A.M. (2006). A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc. Natl. Acad. Sci. U.S.A. 103, 3569-3574. https://doi.org/10.1073/pnas.0600332103
  87. Nagai, K., Oubridge, C., Ito, N., Avis, J., and Evans, P. (1995). The RNP domain : a sequence- specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem. Sci. 20, 235-240. https://doi.org/10.1016/S0968-0004(00)89024-6
  88. Nakaminami, K., Karlson, D.T., and Imai, R. (2006). Functional conservation of cold shock domains in bacteria and higher plants. Proc. Natl. Acad. Sci. U.S.A. 103, 10122-10127. https://doi.org/10.1073/pnas.0603168103
  89. O'Toole, N., Hattori, M., Andres, C., Iida, K., Lurin, C., Schmitz- Linneweber, C., Sugita, M., and Small, I. (2008). On the expansion of the pentatricopeptide repeat gene family in plants. Mol. Biol. Evol. 25, 1120-1128. https://doi.org/10.1093/molbev/msn057
  90. Ostersetzer, O., Cooke, A.M., Watkins, K.P., and Barkan, A. (2005). CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17, 241-255. https://doi.org/10.1105/tpc.104.027516
  91. Ostheimer, G.J., Barkan, A., and Matthews, B.W. (2002). Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure 10, 1593-1601. https://doi.org/10.1016/S0969-2126(02)00886-9
  92. Rackham, O., and Filipovska, A. (2012). The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim. Biophys. Acta 1819, 1008-1016. https://doi.org/10.1016/j.bbagrm.2011.10.007
  93. Rajkowitsch, L., Chen, D., Stampfl, S., Semrad, K., Waldsich, C., Mayer, O., Jantsch, M.F., Konrat, R., Blasi, U., and Schroeder, R. (2007). RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 4, 118-130. https://doi.org/10.4161/rna.4.3.5445
  94. Ripoll, J.J., Ferrándiz, C., Martínez-Laborda, A., and Vera, A. (2006). PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev. Biol. 289, 346-359. https://doi.org/10.1016/j.ydbio.2005.10.037
  95. Sachetto-Martins, G., Franco, L.O., and de Oliveira, D.E. (2000). Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophys. Acta. 1492, 1-14 https://doi.org/10.1016/S0167-4781(00)00064-6
  96. Saha, D., Prasad, A.M., and Srinivasan, R. (2007). Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol. Biochem. 45, 521-534. https://doi.org/10.1016/j.plaphy.2007.03.026
  97. Sasaki, K., Kim, M.-H., and Imai, R. (2007). Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem. Biophys. Res. Commun. 364, 633-638. https://doi.org/10.1016/j.bbrc.2007.10.059
  98. Schein, A., Sheffy-Levin, S., Glaser, F., and Schuster, G. (2008). The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA 14, 1057-1068. https://doi.org/10.1261/rna.907608
  99. Schmitz-Linneweber, C., and Small, I. (2008). Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 13, 663-670. https://doi.org/10.1016/j.tplants.2008.10.001
  100. Schmitz-Linneweber, C., Williams-Carrier, R.E., Williams-Voelker, P.M., Kroeger, T.S., Vichas, A., and Barkan, A. (2006). A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18, 2650-2663. https://doi.org/10.1105/tpc.106.046110
  101. Simpson, G.G., and Filipowicz, W. (1996). Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol. Biol. 32, 1-41 https://doi.org/10.1007/BF00039375
  102. Small, I.D., and Peeters, N. (2000). The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 45-47. https://doi.org/10.1016/S0968-0004(99)01520-0
  103. Stern, D.B., Goldschmidt-Clermont, M. and Hanson, M.R. (2010). Chloroplast RNA metabolism. Annu. Rev. Plant Biol. 61, 125-155. https://doi.org/10.1146/annurev-arplant-042809-112242
  104. Tan, J., Tan, Z., Wu, F., Sheng, P., Heng, Y., Wang, X., Ren, Y., Wang, J., Guo, X., and Zhang, X. (2014). A novel chloroplastlocalized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol. Plant 7, 1329-1349. https://doi.org/10.1093/mp/ssu054
  105. Tripurani, S.K., Nakaminami, K., Thompson, K.B., Crowell, S.V., Guy, C.L., and Karlson, D.T. (2011). Spatial and temporal expression of cold-responsive DEAD-box RNA helicases reveals their functional roles during embryogenesis in Arabidopsis thaliana. Plant Mol. Biol. Rep. 29, 761-768. https://doi.org/10.1007/s11105-010-0282-1
  106. Woodson, S.A. (2010). Taming free energy landscapes with RNA chaperones. RNA Biol. 7, 677-686. https://doi.org/10.4161/rna.7.6.13615
  107. Xu, T., Gu, L., Choi, M.J., Kim, R.J., Suh, M.C., and Kang, H. (2014). Comparative functional analysis of wheat (Triticum aestivum). zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses. PLoS One 9, e96877. https://doi.org/10.1371/journal.pone.0096877
  108. Yin, P., Li, Q., Yan, C., Liu, Y., Liu, J., Yu, F., Wang, Z., Long, J., He, J., and Wang, H.-W. (2013). Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504, 168-171. https://doi.org/10.1038/nature12651
  109. Zmudjak, M., Colas des Francs-Small, C., Keren, I., Shaya, F., Belausov, E., Small, I., and Ostersetzer-Biran, O. (2013). mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis. New Phytol. 199, 379-394. https://doi.org/10.1111/nph.12282
  110. Zsigmond, L., Rigo, G., Szarka, A., Szekely, G., Otvos, K., Darula, Z., Medzihradszky, K.F., Koncz, C., Koncz, Z., and Szabados, L. (2008). Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol. 146, 1721-1737. https://doi.org/10.1104/pp.107.111260
  111. Zsigmond, L., Szepesi, A., Tari, I., Rigo, G., Kiraly, A., and Szabados, L. (2012). Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci. 182, 87-93. https://doi.org/10.1016/j.plantsci.2011.07.008

피인용 문헌

  1. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants ( Coffea arabica ) and rice ( Oryza sativa ) vol.201, 2016, https://doi.org/10.1016/j.jplph.2016.07.004
  2. Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions vol.159, pp.1, 2017, https://doi.org/10.1111/ppl.12488
  3. RNA structure, binding, and coordination in Arabidopsis vol.8, pp.5, 2017, https://doi.org/10.1002/wrna.1426
  4. Plant RNA Interactome Capture: Revealing the Plant RBPome vol.22, pp.6, 2017, https://doi.org/10.1016/j.tplants.2017.04.006
  5. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses vol.8, 2017, https://doi.org/10.3389/fpls.2017.00871
  6. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China vol.22, pp.7, 2017, https://doi.org/10.3390/molecules22071158
  7. Rice DEAD-box RNA helicase OsRH53 has negative impact on Arabidopsis response to abiotic stresses vol.85, pp.1, 2018, https://doi.org/10.1007/s10725-018-0381-9
  8. Development of an in vitro pre-mRNA splicing assay using plant nuclear extract vol.14, pp.1, 2018, https://doi.org/10.1186/s13007-017-0271-6
  9. Overexpression of the DEAD-Box RNA Helicase Gene AtRH17 Confers Tolerance to Salt Stress in Arabidopsis vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123777
  10. Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01209
  11. A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-27814-2
  12. Rice OsRH58, a chloroplast DEAD-box RNA helicase, improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation vol.19, pp.1, 2019, https://doi.org/10.1186/s12870-018-1623-8
  13. A Chloroplast-targeted S1 RNA-binding Domain Protein Plays a Role in Arabidopsis Response to Diverse Abiotic Stresses vol.62, pp.1, 2019, https://doi.org/10.1007/s12374-018-0325-y
  14. Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0209982
  15. Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L. vol.8, pp.None, 2016, https://doi.org/10.3389/fpls.2017.02037
  16. Identification and characterization of glycoproteins during oil palm somatic embryogenesis vol.52, pp.5, 2018, https://doi.org/10.1016/j.anres.2018.11.011
  17. Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance vol.46, pp.5, 2016, https://doi.org/10.1071/fp18241
  18. Label‐Free Quantitative Proteomics of Enriched Nuclei from Sugarcane (Saccharum ssp) Stems in Response to Drought Stress vol.19, pp.14, 2016, https://doi.org/10.1002/pmic.201900004
  19. Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants vol.60, pp.9, 2016, https://doi.org/10.1093/pcp/pcz067
  20. Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins vol.60, pp.9, 2019, https://doi.org/10.1093/pcp/pcz072
  21. PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana vol.100, pp.2, 2016, https://doi.org/10.1111/tpj.14441
  22. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? vol.11, pp.None, 2016, https://doi.org/10.3389/fpls.2020.578096
  23. Insights Into Potato Spindle Tuber Viroid Quasi-Species From Infection to Disease vol.11, pp.None, 2016, https://doi.org/10.3389/fmicb.2020.01235
  24. Investigation of a Novel Salt Stress-Responsive Pathway Mediated by Arabidopsis DEAD-Box RNA Helicase Gene AtRH17 Using RNA-Seq Analysis vol.21, pp.5, 2020, https://doi.org/10.3390/ijms21051595
  25. Genetic and signalling pathways of dry fruit size: targets for genome editing‐based crop improvement vol.18, pp.5, 2016, https://doi.org/10.1111/pbi.13318
  26. Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124548
  27. Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO2 under high ambient ozone vol.26, pp.7, 2016, https://doi.org/10.1007/s12298-020-00828-9
  28. Insights into the N6-methyladenosine mechanism and its functionality: progress and questions vol.40, pp.5, 2020, https://doi.org/10.1080/07388551.2020.1751059
  29. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance vol.21, pp.18, 2016, https://doi.org/10.3390/ijms21186822
  30. A La-Related Protein LaRP6a Delays Flowering of Arabidopsis thaliana by Upregulating FLC Transcript Levels vol.63, pp.5, 2020, https://doi.org/10.1007/s12374-020-09261-7
  31. Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-58495-5
  32. Evaluation of the role of Medicago truncatula Zn finger CCHC type protein after heterologous expression in Arabidopsis thaliana vol.35, pp.1, 2016, https://doi.org/10.1080/13102818.2021.2006786
  33. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions vol.11, pp.1, 2016, https://doi.org/10.3390/life11010049
  34. The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status vol.22, pp.6, 2021, https://doi.org/10.3390/ijms22062845
  35. Molecular regulatory mechanisms underlying the adaptability of polyploid plants vol.96, pp.2, 2016, https://doi.org/10.1111/brv.12661
  36. N6‐Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis vol.106, pp.6, 2021, https://doi.org/10.1111/tpj.15270
  37. Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview vol.22, pp.13, 2016, https://doi.org/10.3390/ijms22136731
  38. Alpha‐ketoglutarate‐dependent dioxygenase homolog 10B, an N6‐methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in Arabidopsis thali vol.173, pp.3, 2016, https://doi.org/10.1111/ppl.13505
  39. Comparative Genomics, Evolution, and Drought-Induced Expression of Dehydrin Genes in Model Brachypodium Grasses vol.10, pp.12, 2016, https://doi.org/10.3390/plants10122664