References
- Alam, M., Noh, M., and Lee, Y. (2013). Likelihood estimate of treatment effects under selection bias, Statistics and Its Interface, 6, 349-359. https://doi.org/10.4310/SII.2013.v6.n3.a5
- Garen, J. (1984). A selectivity bias approach with a continuous choice variable, Econometrica, 52, 1199-1218. https://doi.org/10.2307/1910996
- Glynn, A. N. and Quinn, K. M. (2009). An introduction to the augmented inverse propensity weighted estimator, Political Analysis, 18, 36-56.
- Heckman, J. J. and Smith, J. (1999). The pre-program earnings dip and the determinants participation in a social program: implication for simple program evaluation strategies, Economic Journal, 109, 313-348. https://doi.org/10.1111/1468-0297.00451
- Heckman, J. J., Tobias, J. L., and Vytlacil, E. (2003). Simple estimator for treatment parameters in a latent-variable framework, Review of Economical Statistics, 85, 748-755. https://doi.org/10.1162/003465303322369867
- Hirano, K. and Imbens, G. W. (2004). The propensity score with continuous treatments in Gelman, A. and Meng, X. (eds.), Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, Wiley.
- Iichiro, U., Koji, S., and Yamashiro, G. M. (2006). Effectiveness of credit guarantees in the Japanese loan market, RIETI Discussion Paper Series, 06-E-004.
- Kim, S. and Kim, J. R. (2013). A study on the performance measurement of credit guarantee, Korean Industrial Economic Association, 26, 1381-1399.
- Rosenbaum, P. R. and Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects, Biometrika, 70, 41-55. https://doi.org/10.1093/biomet/70.1.41
- Rubin, D. (1978). Bayesian inference for causal effect: the role of randomization, Annals of Statistics, 6, 34-58. https://doi.org/10.1214/aos/1176344064