DOI QR코드

DOI QR Code

An experimental study and new correlations of viscosity of ethylene glycol-water based nanofluid at various temperatures and different solid concentrations

  • Received : 2015.05.03
  • Accepted : 2016.01.20
  • Published : 2016.04.10

Abstract

This article presents an experimental study on the effect of temperature and solid volume fraction of nanoparticles on the dynamic viscosity for the CuO/EG-water nanofluid. Nanoparticles with diameter of 40 nm are used in the present study to prepare nanofluid by two-step method. A "Brookfield viscometer" has been used to measure the dynamic viscosity of nanofluid with solid volume fraction up to 2% at the temperature range between 20 to $60^{\circ}C$. The findings have shown that dynamic viscosity of nanofluid increases with increasing particle volume fraction and decreasing temperature. Nine different correlations are developed on experimental data point to predict the relative dynamic viscosity of nanofluid at different temperatures. To make sure of accuracy of the proposed correlations, margin of deviation is presented at the end of this study. The results show excellent agreement between experimental data and those obtained through the correlations.

Keywords

References

  1. Avsec, J. and Oblak, M. (2007), "The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics", Int. J. Heat Mass Trans., 50, 4331-4341. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064
  2. Chen, H., Ding, Y. and Tan, C. (2007), "Rheological behavior of nanofluids", New J. Phys., 9, 367-382. https://doi.org/10.1088/1367-2630/9/10/367
  3. Choi, H.J., Kwon, T.M. and Jhon, M.S. (2000), "Effects of shear rate and particle concentration on rheological properties of magnetic particle suspension", J. Mater. Sci., 35, 889-894. https://doi.org/10.1023/A:1004742223080
  4. Ghorbanpour Arani, A. and Kolahchi, R. (2014), "Exact solution for nonlocal axial buckling of linear carbon nanotube hetero-junctions", Proc IMechE Part C: J. Mech. Eng. Sci., 228, 366-377. https://doi.org/10.1177/0954406213483647
  5. Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.Sh. (2015), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
  6. HemmatEsfe, M., Abbasian Arani, A.A., Karimipour, A. and MirtalebiEsforjani, S.S. (2014), "Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different type of nanofluid", Heat Transf. Res., 45(3), 279-292.
  7. Kulkarni, D.P., Das, D.K. and Chukwu, G.A. (2006), "Temperature dependent rheologicalproperties of copper oxide nanoparticles suspension", J. Nanosci. Nanotechnol., 6, 1150-1154. https://doi.org/10.1166/jnn.2006.187
  8. Kwak, K. and Kim, C. (2005), "Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol", Korea-Australia Rheology J., 17, 35-40.
  9. Kwon, T.M., Jhon, M.S. and Choi, H.J. (1998), "Viscosity of magnetic particle suspension", J. Mol. Liq., 75, 115-126. https://doi.org/10.1016/S0167-7322(98)82000-X
  10. Lee, J.H., Hwang, K.S., Jang, S.P., Lee, B.H., Kim, J.H., Choi, S.U.S. and Choi, C.J. (2008), "Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles", Int. J. Heat Mass Trans., 51, 2651-2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  11. Murshed, S.M.S., Leong, K.C. and Yang, C. (2008), "Investigations of thermal conductivity and viscosity of nanofluids", Int. J. Thermal Sci., 47, 560-568. https://doi.org/10.1016/j.ijthermalsci.2007.05.004
  12. Namburu, P.K., Kulkarni, D.P., Misra, D. and Das, D.K. (2007), "Viscosity of copper oxidnanoparticles dispersed in ethylene glycol and water mixture", Exp. Thermal Fluid Sci., 32, 397-402. https://doi.org/10.1016/j.expthermflusci.2007.05.001
  13. Nguyen, C.T., Desgranges, F., Galanis, N., Roy, G., Mare, T., Boucher, S. and Mintsa, H.A. (2008) "Viscosity data for $Al_2O_3$-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?", Int. J. Thermal Sci., 47, 103-111. https://doi.org/10.1016/j.ijthermalsci.2007.01.033
  14. Pak, B.C. and Cho, Y.I. (1998), "Hydrodynamic and heat transfer study of dispersed fluidswith submicron metallic oxide particles", Exp. Heat Transfer., 11(2), 151-170. https://doi.org/10.1080/08916159808946559
  15. Phuoc, T.X. and Massoudi, M. (2009), "Experimental observations of the effects of shearrates and particle concentration on the viscosity of Fe2O3-deionized waternanofluids", Int. J. Thermal Sci., 48, 1294-1301. https://doi.org/10.1016/j.ijthermalsci.2008.11.015
  16. Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosityand its implications for thermal applications", Appl. Phys. Lett., 89, 108-133.
  17. Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2015), "Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., 19, 713-733. https://doi.org/10.12989/scs.2015.19.3.713
  18. Wang, B.X., Zhou, L.P. and Peng, X.F. (2004), "Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspension", Prog. Nat. Sci., 14, 922-926. https://doi.org/10.1080/10020070412331344571
  19. Yang, M.C., Scriven, L.E.and Macosko, C.W. (1986), "Some rheological measurements on magnetic ironoxide suspensions in silicon oil", J. Rheol., 30, 1015-1029. https://doi.org/10.1122/1.549892

Cited by

  1. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions vol.131, pp.2, 2018, https://doi.org/10.1007/s10973-017-6696-3
  2. Experimental investigation of effective parameters on MWCNT–TiO2/SAE50 hybrid nanofluid viscosity pp.1588-2926, 2019, https://doi.org/10.1007/s10973-018-7986-0
  3. Filtration-induced pressure evolution in permeation grouting vol.75, pp.5, 2016, https://doi.org/10.12989/sem.2020.75.5.571
  4. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles vol.14, pp.5, 2016, https://doi.org/10.3390/ma14051291