References
- Avsec, J. and Oblak, M. (2007), "The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics", Int. J. Heat Mass Trans., 50, 4331-4341. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064
- Chen, H., Ding, Y. and Tan, C. (2007), "Rheological behavior of nanofluids", New J. Phys., 9, 367-382. https://doi.org/10.1088/1367-2630/9/10/367
- Choi, H.J., Kwon, T.M. and Jhon, M.S. (2000), "Effects of shear rate and particle concentration on rheological properties of magnetic particle suspension", J. Mater. Sci., 35, 889-894. https://doi.org/10.1023/A:1004742223080
- Ghorbanpour Arani, A. and Kolahchi, R. (2014), "Exact solution for nonlocal axial buckling of linear carbon nanotube hetero-junctions", Proc IMechE Part C: J. Mech. Eng. Sci., 228, 366-377. https://doi.org/10.1177/0954406213483647
- Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.Sh. (2015), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
- HemmatEsfe, M., Abbasian Arani, A.A., Karimipour, A. and MirtalebiEsforjani, S.S. (2014), "Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different type of nanofluid", Heat Transf. Res., 45(3), 279-292.
- Kulkarni, D.P., Das, D.K. and Chukwu, G.A. (2006), "Temperature dependent rheologicalproperties of copper oxide nanoparticles suspension", J. Nanosci. Nanotechnol., 6, 1150-1154. https://doi.org/10.1166/jnn.2006.187
- Kwak, K. and Kim, C. (2005), "Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol", Korea-Australia Rheology J., 17, 35-40.
- Kwon, T.M., Jhon, M.S. and Choi, H.J. (1998), "Viscosity of magnetic particle suspension", J. Mol. Liq., 75, 115-126. https://doi.org/10.1016/S0167-7322(98)82000-X
- Lee, J.H., Hwang, K.S., Jang, S.P., Lee, B.H., Kim, J.H., Choi, S.U.S. and Choi, C.J. (2008), "Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles", Int. J. Heat Mass Trans., 51, 2651-2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
- Murshed, S.M.S., Leong, K.C. and Yang, C. (2008), "Investigations of thermal conductivity and viscosity of nanofluids", Int. J. Thermal Sci., 47, 560-568. https://doi.org/10.1016/j.ijthermalsci.2007.05.004
- Namburu, P.K., Kulkarni, D.P., Misra, D. and Das, D.K. (2007), "Viscosity of copper oxidnanoparticles dispersed in ethylene glycol and water mixture", Exp. Thermal Fluid Sci., 32, 397-402. https://doi.org/10.1016/j.expthermflusci.2007.05.001
-
Nguyen, C.T., Desgranges, F., Galanis, N., Roy, G., Mare, T., Boucher, S. and Mintsa, H.A. (2008) "Viscosity data for
$Al_2O_3$ -water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?", Int. J. Thermal Sci., 47, 103-111. https://doi.org/10.1016/j.ijthermalsci.2007.01.033 - Pak, B.C. and Cho, Y.I. (1998), "Hydrodynamic and heat transfer study of dispersed fluidswith submicron metallic oxide particles", Exp. Heat Transfer., 11(2), 151-170. https://doi.org/10.1080/08916159808946559
- Phuoc, T.X. and Massoudi, M. (2009), "Experimental observations of the effects of shearrates and particle concentration on the viscosity of Fe2O3-deionized waternanofluids", Int. J. Thermal Sci., 48, 1294-1301. https://doi.org/10.1016/j.ijthermalsci.2008.11.015
- Prasher, R., Song, D., Wang, J. and Phelan, P. (2006), "Measurements of nanofluid viscosityand its implications for thermal applications", Appl. Phys. Lett., 89, 108-133.
- Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2015), "Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., 19, 713-733. https://doi.org/10.12989/scs.2015.19.3.713
- Wang, B.X., Zhou, L.P. and Peng, X.F. (2004), "Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspension", Prog. Nat. Sci., 14, 922-926. https://doi.org/10.1080/10020070412331344571
- Yang, M.C., Scriven, L.E.and Macosko, C.W. (1986), "Some rheological measurements on magnetic ironoxide suspensions in silicon oil", J. Rheol., 30, 1015-1029. https://doi.org/10.1122/1.549892
Cited by
- Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions vol.131, pp.2, 2018, https://doi.org/10.1007/s10973-017-6696-3
- Experimental investigation of effective parameters on MWCNT–TiO2/SAE50 hybrid nanofluid viscosity pp.1588-2926, 2019, https://doi.org/10.1007/s10973-018-7986-0
- Filtration-induced pressure evolution in permeation grouting vol.75, pp.5, 2016, https://doi.org/10.12989/sem.2020.75.5.571
- Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles vol.14, pp.5, 2016, https://doi.org/10.3390/ma14051291