References
- ABAQUS/standard user's manual (1998), Vols. I-III, Version 5.8, Pawtucket, RI: Hibbitt, Karlsson & Sorensen, Inc.
- Altman, W. and Oliveira, M.G.D. (1988), "Vibration and Stability cantilevered cylindrical shell panels under follower forces", J. Sound Vib., 122(2), 291-298. https://doi.org/10.1016/S0022-460X(88)80355-9
- Altman, W. and Oliveira, M.G.D. (1990), "Vibration and Stability shell panels with slight internal damping under follower forces", J. Sound Vib., 136(1), 45-50. https://doi.org/10.1016/0022-460X(90)90936-T
- Argyris, J.H. and Symeonidis, S. (1981), "Nonlinear finite element analysis of elastic system under nonconservative loading-natural formulation, part 1, quasistatic problems", Comput. Meth. Appl. Mech. Eng., 26, 75-123. https://doi.org/10.1016/0045-7825(81)90131-6
- Asadi, E. and Qatu, M.S. (2012), "Static analysis of thick laminated shells with different boundary conditions using GDQ", Thin Wall. Struct., 51, 76-81. https://doi.org/10.1016/j.tws.2011.11.004
- Asadi, E. and Qatu, M.S. (2013), "Free vibration of thick laminated cylindrical shells with different boundary conditions using general differential quadrature", J. Vib. Control, 19(3), 356-366. https://doi.org/10.1177/1077546311432000
- Asadi, E., Wang, W. and Qatu, M.S. (2012), "Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94(2), 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011
- Bolotin, V.V. (1963), Nonconservative Problems Of The Theory Of Elastic Stability, Pergamon Press, New York, NY, USA.
- Cagdas, I.U. and Adali, S. (2011), "Buckling of cross-ply cylinders under hydrostatic pressure considering pressure stiffness", Ocean Eng., 38(4), 559-569. https://doi.org/10.1016/j.oceaneng.2010.12.005
- Casimir, J.B., Nguyen, M.C. and Tawfiq, I. (2007), "Thick shells of revolution: Derivation of the dynamic stiffness matrix of continuous elements and application to a tested cylinder", Comput. Struct., 85(23-24), 1845-1857. https://doi.org/10.1016/j.compstruc.2007.03.002
- Chao, C.C., Tung, T.P. and Chern, Y.C. (1988), "Buckling of thick orthotropic spherical shells", Compos. Struct., 9(2), 113-137. https://doi.org/10.1016/0263-8223(88)90003-7
- Chen, J., Dawe, D.J. and Wang, S. (2000), "Nonlinear transient analysis of rectangular composite laminated plates", Compos. Struct., 49(2), 129-139. https://doi.org/10.1016/S0263-8223(99)00108-7
- Chen, W. and Zhang, W. (1993), "Buckling analysis of ring-stiffened cylindrical shells by compound strip method", 12th International Conference Computational Mechanics, Stuttgart, Germany, August.
- Cohen, G.A. (1966), "Conservative of a normal pressure field acting on a shell", AIAA J., 4(10).
- Dooms, D., Degrande, G., De Roeck, G. and Reynders, E. (2004), "Wind induced vibration of thin-walled cylindrical structures", International Conference on Noise and Vibration Engineering, Leuven, Belgium, September.
- Fukuchi, N. and Tanaka, T. (2006), "Non-periodic motions and fractals of a circular arch under follower forces with small disturbances", Struct. Eng. Mech., 6(2), 87-101.
- Goyal, V.K. and Kapania, R.K. (2008), "Dynamic stability of laminated beams subjected to nonconservative loading", Thin Wall. Struct., 46(12), 1359-1369. https://doi.org/10.1016/j.tws.2008.03.014
- Heppler, G.R. and Hansen, J.S. (1986), "A mindlin element for thick and deep shells", Comput. Meth. Appl. Mech. Eng., 54(1), 21-47. https://doi.org/10.1016/0045-7825(86)90033-2
- Hibbitt, H.D. (1979), "Some follower forces and load stiffness", Int. J. Numer. Meth. Eng., 14(6), 207-23.
- Iwata, K., Tsukimor, K. and Kubo, F. (1991), "A Symmetric Load-Stiffness Matrix for Buckling Analysis of Shell Structures under Pressure Loads", Int. J. Press. Ves. Pip., 45(1), 101-120. https://doi.org/10.1016/0308-0161(91)90047-6
- Kang, J.H. (2012), "There-dimensional vibration analysis of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. https://doi.org/10.1016/j.jsv.2012.04.021
- Kang, J.H. (2015), "Vibrations of truncated shallow and deep conical shells with non-uniform thickness", Struct. Eng. Mech., 55(1), 29-46. https://doi.org/10.12989/sem.2015.55.1.029
- Kang, J.H. and Leissa, A.W. (2005), "Three-dimensional vibration analysis of thick hyperboloidal shells of revolution", J. Sound Vib., 282(1-2), 277-296. https://doi.org/10.1016/j.jsv.2004.02.031
- Kasagi, A. and Sridharan, S. (1993), "Buckling and postbuckling analysis of thick composite cylindrical shells under hydrostatic pressure", Compos. Eng., 3(5), 467-481. https://doi.org/10.1016/0961-9526(93)90082-U
- Koiter, W.T. (1967), General Equations Of Elastic Stability For Thin Shells, Theory of Thin Shells, Univ. of Houston Press, USA.
- Lazzari, M., Vitaliani, R.V., Majowiecki, M. and Saett, A.V. (2003), "Dynamic behavior of a tensegrity system subjected to follower wind loading", Comput. Struct., 81(22-23), 2199-2217. https://doi.org/10.1016/S0045-7949(03)00291-8
- Lu, G. and Mao, R. (2001), "A study of the plastic buckling of axially compressed cylindrical shells with a thick-shell theory", Int. J. Mech. Sci., 43(10), 2319-2330. https://doi.org/10.1016/S0020-7403(01)00039-X
- Nali, P., Carrera, E. and Lecca, S. (2011), "Assessments of refined theories for buckling analysis of laminated plates", Compos. Struct., 93(2), 456-464. https://doi.org/10.1016/j.compstruct.2010.08.035
- Ovesy, H.R. and Fazilati, J. (2009), "Stability analysis of composite laminated plate and cylindrical shell structures using semi-analytical finite strip method", Compos. Struct., 89(3), 467-474. https://doi.org/10.1016/j.compstruct.2008.10.003
- Park, S.H. and Kim, J.H. (2002), "Dynamic stability of a stiff-edged cylindrical shell subjected to a follower force", Comput. Struct., 80(3-4), 227-233. https://doi.org/10.1016/S0045-7949(02)00007-X
- Poorveis, D. and Kabir, M.Z. (2006), "Buckling of discretely stringer-stiffened composite cylindrical shells under combined axial compression and external pressure", Scientia Iranica, 13(2), 113-123.
- Qatu, M.S. (1999), "Accurate equations for laminated composite deep thick shells", Int. J. Solid. Struct., 36(19), 2917-2941. https://doi.org/10.1016/S0020-7683(98)00134-6
- Romano, G. (1971), "Potential operators and conservative systems", Proceedings of the 14th Polish Solid Mechanics Conference, Kroscjenko, Poland, September.
- Ross, C.T.F. and Little, A.P.F. (2007), "Design charts for the general instability of ring-stiffened conical shells under external hydrostatic pressure", Thin Wall. Struct., 45(2), 199-208. https://doi.org/10.1016/j.tws.2007.01.018
- Ross, C.T.F., Sawkins, D. and Johns, T. (1999), "A Inelastic buckling of thick-walled circular conical shells under external hydrostatic pressure", Ocean Eng., 26(12), 1297-1310. https://doi.org/10.1016/S0029-8018(98)00066-3
- Sanders, J. and Lyell, J. (1959), "An improved first-approximation theory for thin shells", NASA Technical Report, NASA-TR-R24.
- Schweizerhof, K. and Ramm, E. (1984), "Displacement dependent pressure loads in nonlinear finite element analysis", Comput. Struct., 18(6), 1099-1114. https://doi.org/10.1016/0045-7949(84)90154-8
- Sheinman, I. and Tene, Y. (1974), "Potential energy of a normal pressure field acting on an arbitrary shell", AIAA J., 11(8), 1216-1216.
- Spagnoli, A. (2001), "Different buckling modes in axially stiffened conical shells", Eng. Struct., 23(8), 957-965. https://doi.org/10.1016/S0141-0296(00)00112-7
- Teng, J.G. and Hong, T. (1998), "Nonlinear thin shell theories for numerical buckling predictions", Thin Wall. Struct., 31(1-3), 89-115. https://doi.org/10.1016/S0263-8231(98)00014-7
- Thangam Babu, P.V. and Reddy, D.V. (1973), "Frequency analysis of orthotropic circular cylindrical panels by the finite strip method", Build. Sci., 8(3), 229-241. https://doi.org/10.1016/0007-3628(73)90005-4
- Tornabene, F. (2011), "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Sstruct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006
- Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech. A/Solid., 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007
- Tornabene, F., Brischetto, S., Fantuzzi, N. and Viola, E. (2015), "Numerical and exact models for free vibration analysis of cylindrical and spherical shell panels", Compos. Part B: Eng., 81, 231-250. https://doi.org/10.1016/j.compositesb.2015.07.015
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "The local GDQ method applied to general higherorder theories of doubly-curved laminated composite shells and panels: The free vibration analysis", Compos. Struct., 116, 637-660. https://doi.org/10.1016/j.compstruct.2014.05.008
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015), "Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method", Thin Wall. Struct., 97, 114-129. https://doi.org/10.1016/j.tws.2015.08.023
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015), "Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials", Compos. Struct., 133, 278-299. https://doi.org/10.1016/j.compstruct.2015.06.052
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015), "Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method", Compos. Part B: Eng., 81, 196-230. https://doi.org/10.1016/j.compositesb.2015.07.012
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015), "A new approach for treating concentrated loads in doubly-curved composite deep shells with variable radii of curvature", Compos. Struct., 131, 433-452. https://doi.org/10.1016/j.compstruct.2015.05.049
- Wang, J. and Schweizerhof, K. (1996), "Study on free vibration of moderately thick orthotropic laminated shallow shells by boundary domain elements", Appl. Math. Model., 20(8), 579-584. https://doi.org/10.1016/0307-904X(96)00004-2
- Wang, Q. (2003), "On complex flutter and buckling analysis of a beam structure subjected to static follower force", Struct. Eng. Mech., 16(5), 533-556. https://doi.org/10.1296/SEM2003.16.05.02
- Wang, S. Dawe, D.J. (1999), "Buckling of composite shell structures using the spline finite strip method", Compos. Part B, 30(4), 351-364. https://doi.org/10.1016/S1359-8368(99)00005-0
- Wang, X.H. and Redekop, D. (2011), "Free vibration analysis of moderately-thick and thick toroidal shells", Struct. Eng. Mech., 39(4), 449-463. https://doi.org/10.12989/sem.2011.39.4.449
- Yaghoubshahi, M., Asadi, E. and Fariborz, S.J. (2011), "A higher-order shell model applied to shell with mixed boundary condations", Proceeding of The Institution of Mechanical Engineering, Part C., 224.
- Zhong, W.X. and Cheung, Y.K. (1998), "The precise finite strip method", Compos. Struct., 69(6), 773-783. https://doi.org/10.1016/S0045-7949(97)00105-3
Cited by
- Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.301
- Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.931
- Semi-Analytical Approach in Buckling Analysis of Functionally Graded Shells of Revolution Subjected to Displacement Dependent Pressure vol.139, pp.6, 2017, https://doi.org/10.1115/1.4037042
- A Framework for Collapse Vulnerability Assessment of Steel Beams Subjected to Increasing Loads and Nonuniform Longitudinal Temperature vol.145, pp.5, 2019, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002287
- Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure vol.23, pp.1, 2017, https://doi.org/10.12989/scs.2017.23.1.001
- Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method vol.28, pp.6, 2016, https://doi.org/10.12989/scs.2018.28.6.735
- A simple spline finite strip for buckling analysis of composite cylindrical panel with cutout vol.16, pp.8, 2019, https://doi.org/10.1590/1679-78255535
- A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2016, https://doi.org/10.12989/scs.2019.30.1.013
- Bi-axial and shear buckling of laminated composite rhombic hypar shells vol.74, pp.2, 2016, https://doi.org/10.12989/sem.2020.74.2.227
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- Buckling characteristics of cut-out borne composite stiffened hyperbolic paraboloid shell panel vol.235, pp.11, 2016, https://doi.org/10.1177/14644207211005802