DOI QR코드

DOI QR Code

Effect of Microstructural Factors on Strength and Ductility in Hypoeutectoid Steels with Ferrite-Pearlite Structure

페라이트-펄라이트 조직 아공석강의 강도와 연성에 미치는 미세조직적 인자의 영향

  • Lee, Sang-In (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Kang, Jun-Young (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Lee, Sang-Yoon (Pohang Research Lab, Technical Research Laboratories, POSCO) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 강준영 (서울과학기술대학교 신소재공학과) ;
  • 이상윤 (포스코 기술연구원 포항연구소) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2015.12.17
  • Accepted : 2015.12.30
  • Published : 2016.01.30

Abstract

This article presents a study on the tensile properties of hypoeutectoid steels with different ferrite-pearlite microstructures. Nine kinds of hypoeutectoid steel specimens were fabricated by varying carbon content and isothermal transformation temperature. The microstructural factors such as ferrite & pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured and then tensile tests were carried out on the specimens in order to investigate the correlation of the microstructural factors with strength and ductility. The pearlite volume fraction usually increased with decreasing transformation temperature, while the pearlite interlamellar spacing and cementite thickness decreased mostly with decreasing transformation temperature, irrespective of carbon content. The tensile test results showed that the yield and tensile strengths of all the steel specimens increased and their ductility was also improved as the transformation temperature decreased. For the steel specimens investigated, the difference in the transformation temperature dependence of strength and ductility could be explained by the fact that the variation in pearlite fraction with transformation temperature noticeably affected various microstructural factors such as pearlite interlamellar spacing and cementite thickness associated with pearlite fracture mechanism such as void initiation, cementite necking, and cracking.

Keywords

References

  1. D. Cheetham and N. Ridley : Metal Seience, 9 (1975) 411.
  2. B. E. O'Donnelly, R. L. Reuben and T. N. Baker : Metals Technology, 11 (1984) 45. https://doi.org/10.1179/030716984803274837
  3. K. Nakase and I. M. Bernstein : Metallurgical Transactions A, 19A (1988) 2819.
  4. O. P. Modi, N. Deshmukh, D. P. Mondal, A. K. Jha, A. H. Yegneswaran and H. K. Khaira : Materials Characterization, 46 (2001) 347. https://doi.org/10.1016/S1044-5803(00)00113-3
  5. K. K. Ray and D. Mondal : Acta metallurgica et materialia, 39 (1991) 2201. https://doi.org/10.1016/0956-7151(91)90002-I
  6. T. Gladman, I. D. Mcivor and F. B. Pickering : Journal of The Iron and Steel Institute, 210 (1972) 916.
  7. J. P. Houin, A. Simon and G. Beck : Transactions ISIJ, 21 (1981) 726. https://doi.org/10.2355/isijinternational1966.21.726
  8. C. M. Bae and W. J. Nam : Scripta Materialia, 41 (1999) 605. https://doi.org/10.1016/S1359-6462(99)00200-6
  9. H. J. Sim, Y. B. Lee and W. J. Nam : Journal of Materials Science, 39 (2004) 1849. https://doi.org/10.1023/B:JMSC.0000016201.77933.c2
  10. C. M. Bae, C. S. Lee and W. J. Nam : Materials Science and Technology, 18 (2002) 1317. https://doi.org/10.1179/026708302225007556
  11. K. W. Burns and F. B. Pickering : Journal of The Iron and Steel Institute, 202 (1964) 899.
  12. A. R. Rosenfield, G. T. Hahn and J. D. Embury : Metallurgical Transactions, 3 (1972) 2797. https://doi.org/10.1007/BF02652845
  13. L. E. Miller and G. C. Smith : Journal of The Iron and Steel Institute, 208 (1970) 998.
  14. W. D. Callister and D. G. Rethwisch : Materials science and engineering: an introduction, Wiley, New York, 2007.
  15. D. A. Porter, K. E. Easterling and M. Sherif : Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press, 2009.
  16. F. P. L. Kavishe and T. J. Baker : Materials Science and Technology, 2 (1986) 816. https://doi.org/10.1179/mst.1986.2.8.816
  17. J. M. Hyzak and I. M. Bernstein : Metallurgical Transactions A, 7A (1976) 1217.
  18. F. B. Pickering and B. Garbarz : Scripta Metallurgica, 21 (1987) 249. https://doi.org/10.1016/0036-9748(87)90207-9
  19. A. R. Marder and B. L. Bramfitt : Metallurgical Transactions A, 7A (1975) 365.
  20. N. Ridley : Metallurgical Transactions A, 15 (1984) 1019. https://doi.org/10.1007/BF02644694
  21. C. Zener : Trans. AIME, 167 (1946) 550.
  22. M. Hiller : Jernkont. Ann., 141 (1957) 757.
  23. A. Hultgren : Trans ASM., 39 (1947) 915.
  24. Y. Ohmori and R. W. K. Honeyconbe : Trans. ISIJ, 11 (1971) 1160.

Cited by

  1. Reliability Evaluations for Shear Strength of Resistance Welded Ball Stud according to Different Cooling Methods vol.22, pp.6, 2018, https://doi.org/10.9726/kspse.2018.22.6.044
  2. Effect of Post-Weld Heat Treatment Temperature on the Mechanical Properties and Microstructure of Simulated Weld Heat-Affected Zone of SA-516 Grade 70 Carbon Steel vol.36, pp.2, 2016, https://doi.org/10.5781/jwj.2018.36.2.12