Acknowledgement
Supported by : Science Foundation Ireland Marine Renewable Energy Ireland (MaREI)
References
- Besevic, M. (2012),"Experimental investigation of residual stresses in cold formed steel sections", Steel Compos. Struct., Int. J., 12(6), 465-489. DOI: 10.12989/scs.2012.12.6.465
- Calvi, G.M. and Sullivan, T.J. (2009), A Model Code for the Displacement-based Seismic Design of Structures, IUSS Press, Pavia, Italy.
- CEN (1998), Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings; EN 1998.
- CEN (2004a), Eurocode 1: General actions-Part 1-1: Densities, self-weight, imposed loads for buildings; EN 1991-1-1.
- CEN (2004b), Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings; EN 1998-1:2004/AC: 2009.
- CEN (2005), Eurocode 3: Design of steel structures-Part 1-1: General rules and rules for buildings; EN 1993-1-1:2005/AC:2009.
- Della Corte, G. and Mazzolani, F.M. (2008), "Theoretical developments and numerical verification of a displacement-based design procedure for steel braced structures", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Della Corte, G., Landolfo, R. and Mazzolani, F.M. (2010), "Displacement-based seismic design of braced steel structures", Steel Construction, 3(3), 134-139. DOI: 10.1002/stco.201010019
- Elghazouli, A.Y., Broderick, B.M., Goggins, J., Mouzakis, H., Carydis, P., Bouwkamp, J. and Plumier, A. (2005), "Shake table testing of tubular steel bracing members", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 158(4), 229-241. https://doi.org/10.1680/stbu.2005.158.4.229
- Filippou, F.C. and Fenves, G.L. (2004), Methods of analysis for earthquake-resistant structures, (Chapter 6: Earthquake Engineering), From Engineering Seismology to Performance-Based Engineering.
- Goggins, J. (2004), Earthquake Resistant Hollow and Filled Steel Braces, Doctoral Dissertation, Ph.D. Thesis; Trinity College, University of Dublin, Dublin, Ireland.
- Goggins, J. and Salawdeh, S. (2012), "Validation of nonlinear time history analysis models for single-storey concentrically braced frames using full-scale shake table tests", Earthq. Eng. Struct. Dyn., 42(8), 1151-1170. DOI: 10.1002/eqe.2264
- Hu, J.W. (2014), "Seismic analysis and evaluation of several recentering braced frame structures", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(5), 781-798. DOI: 10.1177/0954406213490600
- McKenna, F., Fenves, G.L. and Scott, M.H. (2000), Object oriented program, OpenSees; Open system for earthquake engineering simulation. http://opensees.berkeley.edu Retrieved from http://opensees.berkeley.edu
- Medhekar, M.S. and Kennedy, D.J.L. (2000a), "Displacement-based seismic design of buildings-application", Engineering Structures, 22(3), 210-221. DOI: 10.1016/s0141-0296(98)00093-5
- Medhekar, M.S. and Kennedy, D.J.L. (2000b), "Displacement-based seismic design of buildings-theory", Engineering Structures, 22(3), 201-209. DOI: 10.1016/s0141-0296(98)00092-3
- Moghaddam, H. and Hajirasouliha, I. (2006), "An investigation on the accuracy of pushover analysis for estimating the seismic deformation of braced steel frames", J. Construct. Steel Res., 62(4), 343-351. DOI: 10.1016/j.jcsr.2005.07.009
- Nascimbene, R., Rassati, G.A. and Wijesundara, K.K. (2012), "Numerical simulation of gusset plate connections with rectangular hollow section shape brace under quasi-static cyclic loading", J. Construct. Steel Res., 70, 177-189. DOI: http://dx.doi.org/10.1016/j.jcsr.2011.09.010
- Nip, K.H., Gardner, L., Davies, C.M. and Elghazouli, A.Y. (2010a), "Extremely low cycle fatigue tests on structural carbon steel and stainless steel", J. Construct. Steel Res., 66(1), 96-110. DOI: 10.1016/j.jcsr.2009.08.004
- Nip, K.H., Gardner, L. and Elghazouli, A.Y. (2010b), "Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members", Eng. Struct., 32(2), 424-441. https://doi.org/10.1016/j.engstruct.2009.10.005
- Pennucci, D., Sullivan, T.J. and Calvi, G.M. (2011), "Displacement reduction factors for the design of medium and long period structures", J. Earthq. Eng, 15(sup1), 1-29. DOI: 10.1080/13632469.2011.562073
- Priestley, M.J.N., Calvi, G.M. and Kowalsky, M.J. (2007), Displacement-Based Seismic Design of Structures, IUSS Press, Pavia, Italy.
- Salawdeh, S. (2012), Seismic Design of Concentrically Braced Frames, Ph.D., National University of Ireland, Galway, Ireland.
- Salawdeh, S. and Goggins, J. (2013), "Numerical simulation for steel brace members incorporating a fatigue model", Eng. Struct., 46, 332-349. DOI: 10.1016/j.engstruct.2012.07.036
- SAP2000 (2002), A General Structural Analysis Program, Computers and Structures, Inc., University of California, Berkeley, CA, USA.
- SeismoSoft (2007), SeismoStruct-A computer program for static and dynamic analysis for framed structures. Available from URL: www.seismosoft.com
- Tremblay, R. (2002), "Inelastic seismic response of steel bracing members", J. Construct. Steel Res., 58(5-8), 665-701. https://doi.org/10.1016/S0143-974X(01)00104-3
- Uriz, P., Filippou, F. and Mahin, S. (2008), "Model for cyclic inelastic buckling of steel braces", J. Struct. Eng., 134(4), 619-628. DOI: 10.1061/(ASCE)0733-9445(2008)134:4(619)
- Wijesundara, K.K. (2009), Design of Concentrically Braced Steel Frames with RHS Shape Braces, Ph.D. Thesis; ROSE School, IUSS Pavia, Italy, 345 p.
- Wijesundara, K.K., Bolognini, D., Nascimbene, R. and Calvi, G.M. (2009), "Review of design parameters of concentrically braced frames with RHS shape braces", J. Earthq. Eng., 13(sup1), 109-131. DOI: 10.1080/13632460902813331
- Wijesundara, K.K., Nascimbene, R. and Sullivan, T.J. (2011), "Equivalent viscous damping for steel concentrically braced frame structure", Bull. Earthq. Eng., 9(5), 1535-1558. DOI: 10.1007/s10518-011-9272-4
- Wijesundara, K.K., Nascimbene, R. and Rassati, G.A. (2014), "Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach", J. Construct. Steel Res., 101, 426-436. DOI: http://dx.doi.org/10.1016/j.jcsr.2014.06.009
- Yoo, J.-H., Lehman, D.E. and Roeder, C.W. (2008), "Influence of connection design parameters on the seismic performance of braced frames", J. Construct. Steel Res., 64(6), 607-623. DOI: http://dx.doi.org/10.1016/j.jcsr.2007.11.005
Cited by
- Shake Table Testing of Concentrically Braced Steel Structures With Realistic Connection Details Subjected to Earthquakes vol.13, 2018, https://doi.org/10.1016/j.istruc.2017.12.003
- Recommendations for numerical modelling of concentrically braced steel frames with gusset plate connections subjected to earthquake ground motion vol.2, pp.3, 2017, https://doi.org/10.1080/24705314.2017.1354154
- Investigating the effects of span arrangements on DDBD-designed RC buildings under the skew seismic attack vol.77, pp.1, 2021, https://doi.org/10.12989/sem.2021.77.1.115
- Applicability of the direct displacement-based design procedure to concentrically braced frames with setbacks vol.6, pp.3, 2021, https://doi.org/10.1080/24705314.2021.1914806
- Shake Table Testing of Self‐Centring Concentrically Braced Frames vol.4, pp.2, 2016, https://doi.org/10.1002/cepa.1508
- Seismic design of plane steel MRFS, EBFS and BRBFS by improved direct displacement-based design method vol.153, pp.None, 2022, https://doi.org/10.1016/j.soildyn.2021.107111