DOI QR코드

DOI QR Code

Antibiotics Assay of Doxycycline in Food System using Stripping Voltammetry

  • Ly, Suw Young (Biosensor Research Institute, Seoul National University of Technology) ;
  • Lee, Chang Hyun (Department of Integrated Enviromental Systems, Pyeongtaek University)
  • Received : 2016.11.17
  • Accepted : 2016.12.23
  • Published : 2016.12.30

Abstract

A voltammetric analysis of doxycycline was developed using DNA immobilized onto a carbon nanotube paste electrode (PE). An anodic peak current was indicated at 0.2 V (versus Ag/AgCl) in a 0.1M $NH_4H_2PO_4$ electrolyte solution. The linear working range of the cyclic and square wave stripping voltammetry was obtained to $1-27ngL^{-1}$ with an accumulation time of 800 s. Final analytical parameters were optimized to be as follows: amplitude, 0.35 V; frequency, 500 Hz; and pH, 5.43. Here detection limit was found to be $0.45ngL^{-1}$, this result can be applied in foods systems and in the biological diagnostics

Keywords

References

  1. Paul, A. B., Hans, C. H. L., Hai, P. M., Bent, H. S., Alistair, B. A. B., Paul, K., (2004) Fast and robust simultaneous determination of three veterinary antibiotics in ground water and surface water using a tandem solid-phase extraction with high-performance liquid chromatography-UV detection, J Chromatogr A, 1045, 111-117. https://doi.org/10.1016/j.chroma.2004.05.063
  2. Pilar, V., Nuria, B., & Carmen, L. E., (2004) Manuel Hernandez-Cordoba, Liquid chromatography with ultraviolet absorbance detection for the analysis of tetracycline.
  3. Anne, M. J., Bent, H. S., Flemming, I., & Steen, H. H., (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry, J Chromat A, 1038, 157-170. https://doi.org/10.1016/j.chroma.2004.03.034
  4. Eva, R. S., Tjasa, P., Vera, M., & Franc, S., (2005) Susceptibility of Borrelia afzelii strains to antimicrobial agents, In J Antimicrob Ag 25, 474-478. https://doi.org/10.1016/j.ijantimicag.2005.02.007
  5. Xiaojing, D., & Shifen, M., (2000) Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent, J Chromatogr A, 89, 205-214.
  6. Rosie, C., Oivind, B., & Ole, B. S., (2004) Short communication One step liquid chromatographic method for the determination of oxytetracycline in fish muscle, J Chromatogr B, 810, 325-328. https://doi.org/10.1016/S1570-0232(04)00659-2
  7. Shinwoo, Y., & Kenneth, C., (2004) Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique, Water Res 3, 3155-3166.
  8. Papadoyannis, I.N., Samanidou, V.F., & Kovatsi, L.A., (2000) A rapid high performance liquid chromatographic (HPLC) assay for the determination of oxytetracycline in commercial pharmaceuticals, J Pharmaceut Biomed 23, 275-280. https://doi.org/10.1016/S0731-7085(00)00300-9
  9. Hans, S., Flemming, I., Richard, A., Bent, H. S., JimK, B., Christian, J. W., David, J. J., & Keith, R. S., (2005) Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC.UV and LC/MS/MS under aquatic semi-.eld microcosm conditions, Chemosphere 60, 619-629. https://doi.org/10.1016/j.chemosphere.2005.01.035
  10. Nozal, L., Arce, L., Simonet, B.M., Rios, A., & Valcarcel, M., (2004) Rapid determination of trace levels of tetracyclines in surface water using a continuous flow manifold coupled to a capillary electrophoresis system, Anal Chim Acta 517, 89-94. https://doi.org/10.1016/j.aca.2004.04.050
  11. Marzanna, K., & Agnieszka, K. M., (2004) Electrochemical determination of oxytetracycline in veterinary drugs, J Pharmaceut Biome 34, 95-102. https://doi.org/10.1016/j.japna.2003.08.010
  12. Fernandez, G. R, Garcia, F. M. S., & Simal, G. J., (2000) Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry, Anal Chim Acta 455. 143-148.
  13. Anne, K. L., Bent, H. S., Claus, C., Jette, T., & Steen, H. H., (2004) Quantitative analysis of oxytetracycline and its impurities by LC-MS-MS, J Pharm Biomed 34, 325-332. https://doi.org/10.1016/S0731-7085(03)00500-4
  14. Xian, X. S., Xu, Z., Hassan, Y.,& Aboul, E., (2004) Construction and characterization of potentiometric sensor for the determination of oxytetracycline hydrochloride, IL FARMACO 59, 307-314. https://doi.org/10.1016/j.farmac.2003.09.002
  15. Wangfuengkanagul, N., Siangproh, W., & Chailapakul, O., (2004) A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode, Talanta 64, 1183-1188. https://doi.org/10.1016/j.talanta.2004.04.032
  16. Zhu, J., Snow, D.D., Cassada, D.A., Monson, S.J., & Spalding, R.F. (2001) Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography- tandem mass spectrometry, J ChromatogrA, 928. 177-186. https://doi.org/10.1016/S0021-9673(01)01139-6
  17. Hisao, O., Yuko, I., & Hiroshi, M., (2000) Chromatographic analysis of tetracycline antibiotics in foods, J Chromat A, 882, 109-133. https://doi.org/10.1016/S0021-9673(99)01316-3
  18. Marc, C., Mario, S,, Siska, C., & Patrick, D. B., (2003) Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry, Anal Chim Acta 492, 199-213. https://doi.org/10.1016/S0003-2670(03)00341-6
  19. Hisao, O., Yuko, I., & Hiroshi, M., (2000) Chromatographic analysis of tetracycline antibiotics in foods, J Chromat A, 882, 109-133. https://doi.org/10.1016/S0021-9673(99)01316-3
  20. Marzanna, K., & Agnieszka, K. M., (2004) Electrochemical determination of oxytetracycline inveterinary drugs, J Pharmaceut Biome 34, 95-102. https://doi.org/10.1016/j.japna.2003.08.010
  21. Nagwa, A. E., (2004) Voltammetric analysis of drugs, Bioelectrochemistry 64, 99-107. https://doi.org/10.1016/j.bioelechem.2004.03.003
  22. Adriano, A., Riccarda, A., Luigi, C., Roberto, D., & Irma, L. (2005) Electrochemical determination of pharmaceuticals in spiked water samples, J Hazard Mater 122, 219-225. https://doi.org/10.1016/j.jhazmat.2005.03.011
  23. Manli, G., Jinhua, C., Dengyou, L., Lihua, N., & Shouzhuo, Y., (2004) Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes, Bioelectrochemistry 62, 29-35. https://doi.org/10.1016/j.bioelechem.2003.10.005
  24. Yuan, D. Z., Dai, W. P., Shen, Hu., Zong, L. W., Jie, K. C., & Hong, P. D., (1999) DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers, Talanta 49, 751-756. https://doi.org/10.1016/S0039-9140(99)00078-8
  25. Ge, Z., Kuaizhi. L., Song. L., Ji. L., Xinyong. G., & Zhijun, Z. (2003) Application of a Carbon Nanotube Modified Electrode in Anodic Stripping Voltammetry for Determination of Trace Amounts of 6-Benzylaminopurine, Microchim. Acta 143, 255-260. https://doi.org/10.1007/s00604-003-0078-1
  26. Gang, W., Jing, J.X., & Hong, Y. C. (2002) Interfacing cytochrome c to electrodes with a DNA