DOI QR코드

DOI QR Code

나노 영가철 환원 반응성의 정량 분석을 위한 수정된 인도페놀법 적용

Modification of Indophenol Reaction for Quantification of Reduction Activity of Nanoscale Zero Valent Iron

  • 황유훈 (서울과학기술대학교 환경공학과) ;
  • 이원태 (금오공과대학교 환경공학과) ;
  • Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Lee, Wontae (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Andersen, Henrik R. (Department of Environmental Engineering, Technical University of Denmark)
  • 투고 : 2016.10.11
  • 심사 : 2016.12.28
  • 발행 : 2016.12.31

초록

나노 기술에 대한 관심이 증가함에 따라 다양한 종류의 나노 물질이 환경 정화 분야에서 활발히 연구되고 있다. 이에 따라 새롭게 개발된 나노 물질의 성능을 쉽고 신속하게 측정할 수 있는 분석법에 대한 요구가 증가하고 있다. 본 연구에서는 토양/지하수 정화 분야에서 활발히 사용되는 나노 영가철의 환원 반응성을 쉽고 신속하게 측정할 수 있는 방법으로써 수정된 인도페놀법을 제시하였다. 인도페놀법에서 한계반응물로 작용하던 암모늄과 과량으로 존재하던 페놀을 치환하여 사용함으로써 페놀류에 대한 정량 분석이 가능하도록 수정하였다. 대상으로 한 나노 영가철에 의한 환원 반응은 4-클로로페놀의 페놀로의 환원과 나이트로벤젠의 아닐린으로의 환원이었으며, 수정된 인도페놀법은 반응생성물인 페놀과 아닐린에 대하여 선택성을 나타내 분석 방법으로 사용이 가능함을 확인하였다. 민감도 향상을 위하여 발색 시약의 농도 및 반응 시간, 시료의 전처리 등의 영향에 대하여 평가하였다. 실제 시료를 대상으로 시험하였을 때, 용존 철 이온에 의한 저해 영향을 확인하여 탄산나트륨 용액 주입의 전처리를 이용하여 해결하였다. 최종적으로 개발된 분석 방법을 이용하여 나노 영가철 및 이중금속 나노영가철의 환원 반응성을 측정하였으며, 결과적으로 환원 반응 속도의 차이뿐 아니라 환원 기작의 차이도 구분할 수 있는 가능성을 보여 주어 나노 영가철의 환원과 관련된 연구 분야에서 유용하게 사용될 수 있을 것으로 사료된다.

Nanoscale zero-valent iron (nZVI) has been effectively applied for environmental remediation due to its ability to reduce various toxic compounds. However, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of nZVIs. A modified indophenol method was suggested to determine reducing activity of nZVI. The method was originally developed to determine aqueous ammonia concentration, but it was further modified to quantify phenol and aniline. The assay focused on analysis of reduction products rather than its mother compounds, which gave more accurate quantification of reductive activity. The suggested color assay showed superior selectivity toward reduction products, phenol or aniline, in the presence of mother compounds, 4-chlorophenol or nitrobenzene. Reaction conditions, such as reagent concentration and reaction time, were optimized to maximize sensitivity. Additionally, pretreatment step using $Na_2CO_3$ was suggested to eliminate the interference of residual iron ions. Monometallic nZVI and bimetallic Ni/Fe were investigated with the reaction. The substrates showed graduated reactivity, and thus, reduction potency and kinetics of different materials and reaction mechanism was distinguished. The colorimetric assay based on modified indophenol reaction can be promises to be a useful and simple tool in various nZVI related research topics.

키워드

참고문헌

  1. Ministry of Environment, Soil & Groundwater Information System, http://sgis.nier.go.kr, (2014).
  2. Wikipedia, https://en.wikipedia.org/wiki/Flint_water_crisis (2016).
  3. Danish Ministry of the Environment, http://www.geus.dk/ program-areas/water/denmark/vandforsyning_artikel.pdf
  4. Adeleye, A. S., Garner, K., Huang, Y., Su, Y., Arturo, A. and Keller, J. R. C., "Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability," Chem. Eng. J., 286, 640-662(2016). https://doi.org/10.1016/j.cej.2015.10.105
  5. Ko, S., Song, H. and Kim, Y. H., "Effects of Dissolved Gas Types and Solution Chemistry on the Reaction Rates of Chromium(VI) reduction by Zero Valent Iron," J. Korean Soc. Civil Eng., 25(5B), 407-412(2005).
  6. Kim, T., Kim, H. S., Lee, J. Y., Cheon, J. Y., Lee, K. K. and Hwang, I., "Effects of Dissolved Compounds in Groundwater on TCE Degradations Reaction by Nanoscale Zero- Valent Iron," J. Korean Soc. Environ. Eng., 33(6), 413-419 (2011). https://doi.org/10.4491/KSEE.2011.33.6.413
  7. Lacinova, L., Cernikova, M., Hrabal, J. and Cernik, M., "In-Situ Combination of Bio and Abio Remediation of Chlorinated Ethenes," Ecol. Chem. Eng., S., 20, 463-473(2013).
  8. Bardos, B., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G. and Merly, C., "A Risk/Benefit Appraisal for the Application of Nano‐Scale Zero Valent Iron (nZVI) for the Remediation of Contaminated Sites," NanoRem Project. DOI: 10.13140/2.1.5036.7367(2014).
  9. Hwang, Y., Lee, Y.-C., Mines, P. D., Huh, Y. S. and Andersen, H. R., "Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination," Appl. Catal. B Environ., 147, 748-755(2014). https://doi.org/10.1016/j.apcatb.2013.10.017
  10. Choi, H., Al-Abed, S. R., Agarwal, S. and Dionysiou, D. D., "Synthesis of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon for the Simultaneous Adsorption and Dechlorination of PCBs," Chem. Mater., 20, 3649-3655(2008). https://doi.org/10.1021/cm8003613
  11. Petala, E., Dimos, K., Douvalis, A., Bakas, T. and Tucek, J., "Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr (VI) removal from aqueous solution," J. Hazard. Mater., 261, 295-306(2013). https://doi.org/10.1016/j.jhazmat.2013.07.046
  12. Bae, S. and Lee, W., "Influence of Riboflavin on Nanoscale Zero-Valent Iron Reactivity during the Degradation of Carbon Tetrachloride," Environ. Sci. Technol., 48, 2368-2376 (2014). https://doi.org/10.1021/es4056565
  13. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. and Lowry, G. V., "TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties," Environ. Sci. Technol., 39, 1338-1345(2005). https://doi.org/10.1021/es049195r
  14. Searle, P. L., "The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review," Analyst, 109, 549-568(1984). https://doi.org/10.1039/an9840900549
  15. Afkhami, A. and Norooz-Asl, R., "Micelle-mediated extraction and spectrophotometric determination of ammonia in water samples utilizing indophenol dye formation," J. Braz. Chem. Soc., 19, 1546-1552(2008). https://doi.org/10.1590/S0103-50532008000800014
  16. Li, Y., Zhang, Y., Li, J., Sheng, G. and Zheng, X., "Enhanced reduction of chlorophenols by nanoscale zerovalent iron supported on organobentonite," Chemosphere, 92, 368-74(2013). https://doi.org/10.1016/j.chemosphere.2013.01.030
  17. Li, H., Zhao, Y. S., Zhao, R., Ma, B. W., Chen, Z. F., Su, Y. and Zhou, R., "Characteristics and kinetics of nitrobenzene reduction by sucrose-modified nanoiron," Chem. Res. Chinese Univ., 29, 765-770(2013). https://doi.org/10.1007/s40242-013-3041-7
  18. Mines, P. D., Byun, J., Hwang, Y., Patel, H. A. Andersen, H. R. and Yavuz, C. T., "Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal," J. Mater. Chem. A, 4, 632-639(2016). https://doi.org/10.1039/C5TA05025A
  19. American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 22nd ed.(2012).
  20. Chaplin, B. P., Reinhard, M., Schneider, W. F., Schüth, C., Shapley, J. R., Strathmann, T. J. and Werth, C. J., "Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water," Environ. Sci. Technol., 46, 3655-3670 (2012). https://doi.org/10.1021/es204087q
  21. Cwiertny, D. M., Bransfield, S. J., Livi, K. J. T., Fairbrother, D. H. and Roberts, A. L., "Exploring the Influence of Granular Iron Additives on 1,1,1-Trichloroethane Reduction," Environ. Sci. Technol., 40, 6837-6843(2006). https://doi.org/10.1021/es060921v